微分方程的一个特解形式A题
展开全部
先求解齐次方程y''-5y'+6y=0。
由特征方程D^2-5D+6=0解得D=-2或-3。
所以齐次方程有形如y=C1exp(2x)+C2exp(3x)的通解。
现在解非齐次方程的一个特解:
设非齐次方程有特解形如y0=x^k(ax+b)exp(2x)。因为2是原方程的单特征根,所以取k=1。
所以y0=x(ax+b)exp(2x)。令y=y0带入原方程,解得2aexp(2x)-2axexp(2x)-bexp(2x)=xexp(2x)。
整理得(2a-b)exp(2x)-2axexp(2x)=xexp(2x)。
所以-2a=1解得a=-0.5.
又有2a-b=0解得b=-1
所以原方程有形如y0=x(-0.5x-1)exp(2x)的特解。
所以原方程的通解为
y=C1exp(2x)+C2exp(3x)+x(-0.5x-1)exp(2x)
由特征方程D^2-5D+6=0解得D=-2或-3。
所以齐次方程有形如y=C1exp(2x)+C2exp(3x)的通解。
现在解非齐次方程的一个特解:
设非齐次方程有特解形如y0=x^k(ax+b)exp(2x)。因为2是原方程的单特征根,所以取k=1。
所以y0=x(ax+b)exp(2x)。令y=y0带入原方程,解得2aexp(2x)-2axexp(2x)-bexp(2x)=xexp(2x)。
整理得(2a-b)exp(2x)-2axexp(2x)=xexp(2x)。
所以-2a=1解得a=-0.5.
又有2a-b=0解得b=-1
所以原方程有形如y0=x(-0.5x-1)exp(2x)的特解。
所以原方程的通解为
y=C1exp(2x)+C2exp(3x)+x(-0.5x-1)exp(2x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询