已知向量a=(sinθ, cosθ).b=(2,-1)
若a⊥b求sinθ-cosθ/sinθ+cosθ的值若/a-b/=2.θ∈(0,圆周率/2).求sin(θ+圆周率/4)的值...
若a⊥b求sinθ-cosθ/sinθ+cosθ的值 若/a-b/=2.θ∈(0,圆周率/2).求sin(θ+圆周率/4)的值
展开
1个回答
展开全部
(1)若a⊥b,则a*b=0
2sinθ-cosθ=0
tanθ=1/2
所以(sinθ-cosθ)/(sinθ+cosθ)
=(tanθ-1)/(tanθ+1)
=(1/2-1)/(1/2+1)
=-1/3
(2)若|a-b|=2,则|(sinθ-2,cosθ+1)|=2
sin^2θ-4sinθ+4+cos^2θ+2cosθ+1=4
2sinθ-cosθ=1
令θ=2x 因为0<θ<π/2,所以0<x<π/4
4sinxcosx-cos^2x+sin^2x=sin^2x+cos^2x
2sinxcosx=cos^2x
2sinx=cosx
tanx=1/2
所以sin(θ+π/4)
=√2/2*(sinθ+cosθ)
=√2/2*(2sinxcosx+cos^2x-sin^2x)/(sin^2x+cos^2x)
=√2/2*(2tanx+1-tan^2x)/(tan^2x+1)
=√2/2*(2*1/2+1-1/4)/(1/4+1)
=7√2/10
2sinθ-cosθ=0
tanθ=1/2
所以(sinθ-cosθ)/(sinθ+cosθ)
=(tanθ-1)/(tanθ+1)
=(1/2-1)/(1/2+1)
=-1/3
(2)若|a-b|=2,则|(sinθ-2,cosθ+1)|=2
sin^2θ-4sinθ+4+cos^2θ+2cosθ+1=4
2sinθ-cosθ=1
令θ=2x 因为0<θ<π/2,所以0<x<π/4
4sinxcosx-cos^2x+sin^2x=sin^2x+cos^2x
2sinxcosx=cos^2x
2sinx=cosx
tanx=1/2
所以sin(θ+π/4)
=√2/2*(sinθ+cosθ)
=√2/2*(2sinxcosx+cos^2x-sin^2x)/(sin^2x+cos^2x)
=√2/2*(2tanx+1-tan^2x)/(tan^2x+1)
=√2/2*(2*1/2+1-1/4)/(1/4+1)
=7√2/10
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询