初中数学思想方法有哪些

 我来答
么光远抄图
2019-02-15 · TA获得超过3万个赞
知道大有可为答主
回答量:1.2万
采纳率:28%
帮助的人:642万
展开全部
根据大纲’‘精神,初中数学的基本思想主要指转化、分类、数形结合等基本方法主要指待定系数法、消儿法、配方法、换元法、图象法等由于数学方法在教材中大都有具体陈述,而数学思想却是隐含在知识系统之中.这为强化数学思想方法带来了一定困难_为此.下面谈谈转化、分类讨论、数形结合等在初中数学中的表现「〕1.转化思想所谓转化思想是指一种研究对象在一定条件下转化为另一种研究对象的思维方式转化思想是数学思想方法的核心,其它数学思想方法都是转化的手段或策略)初中数学中运用转化思想具体表现在以下三个方面:(l)把新问题转化为原来研究过的问题如有理数减法转化为加法,除法转化为乘法等(助把复杂的问题转化为简单的问题(,新问题用已有的方法不能或难以解决时,建立新的研究方式如引进负数,建立数轴;变利用逆运算的性质解方程为利用等式的性质解方程,等等。‘2.分类讨论思想所谓分类讨论是指对于复杂的对象,为了研究的需要.根据对象本质属性的相同点和差异性,将对象区分为不同种类,通过研究各类对象的性质,从而认识整体的性质的思想方式。在分类讨论中要注意标准的同一性.即划分始终是同一个标准、这个标准必须是科学合理的;分域的互斥性.即所分成的各类既要互不包含.义要使各类总和等于讨论的全集;分域的逐级性,有的问题分类后还可在每,类中丙继续分类。运用分类讨论思想指导数学教学,有利于学生归纳、总结所学的数学知识,使之系统化、条理化.并逐步形成一个完整的知识结构网络,这有利于学生严密、清晰、合理地探索解题思路,提高数学思维能力。在初中数学中需要分类讨沦的问题主要表现个方而:(扮有的数学概念、定理的论证包含多种情况.这类问题需要分类讨论。如平面儿何中二角形的分类、四边形的分类、角的分类、圆周角定理、圆幂定理、弦切角定理等的证明,都涉及到分类i寸论(约解含字毋参数或绝对值符号的为一程、不等式、讨论算术根、正比例和反比例的数中二次项系数、,与图象的开l:]方向等,由于这些参数的取位不同或要去掉绝对值符号就有不同的结果.这类问题需要分类讨论(3)有的数学问题.虽结论惟一但导致这结论的前提不尽相同.这类问题也要分类讨论3一效形结合思想所谓数形结合是指抽象的数学语言与形象直观的图形结合起来.从而实现由抽象向具体转化的一种思维方式。著名数学家华罗庚说过:数缺形时不直观,形少数时难人微有些数最关系.借助于图形的性质,可以使许多抽象的概念和复杂的关系直观化、形象化、简单化,而图形的一些性质.借助于数量的计算和分析.得以严谨化。在初中阶段,数形结合的形可以是数轴、函数的图象和几何图形等等.它们都具有形象化的特点数形结合思想在初中数学中主要表现在以下两个方面;(l)以形助数,帮助学生深刻理解数学概念如教师可以用数轴上点和实数之间的对应关系来讲清相反数、绝对值的概念以及比较两个数大小的方法;运用函数图象的性质讨沦一元三次方程的根以及讨论一7乙一次小等式等等(2)以数助形,帮助学生简化解题方法。初中数学中还渗透了类比、归纳、联想等数学思想方法这些思想力一法之间,是相互渗透、互相促进的,在数学教学中要有机地结合起来
况乐正素勤
2019-03-22 · TA获得超过3万个赞
知道大有可为答主
回答量:9515
采纳率:28%
帮助的人:668万
展开全部
‘2.分类讨论思想所谓分类讨论是指对于复杂的对象,为了研究的需要.根据对象本质属性的相同点和差异性,将对象区分为不同种类,通过研究各类对象的性质,从而认识整体的性质的思想方式。在分类讨论中要注意标准的同一性.即划分始终是同一个标准、这个标准必须是科学合理的;分域的互斥性.即所分成的各类既要互不包含.义要使各类总和等于讨论的全集;分域的逐级性,有的问题分类后还可在每,类中丙继续分类。运用分类讨论思想指导数学教学,有利于学生归纳、总结所学的数学知识,使之系统化、条理化.并逐步形成一个完整的知识结构网络,这有利于学生严密、清晰、合理地探索解题思路,提高数学思维能力。在初中数学中需要分类讨沦的问题主要表现个方而:(扮有的数学概念、定理的论证包含多种情况.这类问题需要分类讨论。如平面儿何中二角形的分类、四边形的分类、角的分类、圆周角定理、圆幂定理、弦切角定理等的证明,都涉及到分类i寸论(约解含字毋参数或绝对值符号的为一程、不等式、讨论算术根、正比例和反比例的数中二次项系数、,与图象的开l:]方向等,由于这些参数的取位不同或要去掉绝对值符号就有不同的结果.这类问题需要分类讨论(3)有的数学问题.虽结论惟一但导致这结论的前提不尽相同.这类问题也要分类讨论3一效形结合思想所谓数形结合是指抽象的数学语言与形象直观的图形结合起来.从而实现由抽象向具体转化的一种思维方式。著名数学家华罗庚说过:数缺形时不直观,形少数时难人微有些数最关系.借助于图形的性质,可以使许多抽象的概念和复杂的关系直观化、形象化、简单化,而图形的一些性质.借助于数量的计算和分析.得以严谨化。在初中阶段,数形结合的形可以是数轴、函数的图象和几何图形等等.它们都具有形象化的特点数形结合思想在初中数学中主要表现在以下两个方面;(l)以形助数,帮助学生深刻理解数学概念如教师可以用数轴上点和实数之间的对应关系来讲清相反数、绝对值的概念以及比较两个数大小的方法;运用函数图象的性质讨沦一元三次方程的根以及讨论一7乙一次小等式等等(2)以数助形,帮助学生简化解题方法。初中数学中还渗透了类比、归纳、联想等数学思想方法这些思想力一法之间,是相互渗透、互相促进的,在数学教学中要有机地结合起来
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
阿泽ei
2014-02-16 · TA获得超过162个赞
知道答主
回答量:71
采纳率:0%
帮助的人:54万
展开全部
中学数学中的数学思想方法

数学思想方法,从接受的难易程度可分为三个层次:

一是基本具体的数学
方法,如配方法、换元法、待定系数法、归纳法与演绎法等;二是科学的逻辑方
法,如观察、归纳、类比、抽象概括等方法,以及分析法、综合法与反证法等逻
辑方法;三是数学思想,如数形结合的思想、函数与方程的思想、分类讨论的思
想及化归与转化的思想。
数学思想方法还可以按其他方式进行分类。
例如,
胡炯
涛认为:

最高层次的基本数学思想是数学教材的基础与起点,整个中学教学的
内容均遵循着基本数学思想的轨迹而展开。
“符号化与变换思想”

“集合与对应
思想”以及“公理化与结构思想”构成了最高层次的基本数学思想。他认为中学
数学基本思想是指:

渗透在中学数学知识与方法中具有普遍而强有力适应性的
本质思想。归纳为十个方面内容:

符号思想、映射思想、化归思想、分解思想、
转换思想、参数思想、归纳思想、类比思想、演绎思想、模型思想。

逻辑学中的方法:

分析法、综合法、反正法、归纳法;具体数
学方法:

配方法、换元法、待定系数法、同一法等
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式