
初中数学题,求解答,有采纳,谢谢!
2个回答
展开全部
(1)如图,连接BF,由△ABC≌△DBE,可得BC=BE,根据直角三角形的“HL”定理,易证△BCF≌△BEF,即可证得;
(2)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AC=AF+CF=AF+EF,即AF+EF=DE;
(3)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AF=AC+FC=DE+EF.
解答:(1)证明:连接BF,
∵△ABC≌△DBE,
∴BC=BE,
在△BCF和△BEF中,
{BC=BE∠BCF=∠BEF=90°BF=BF,
∴△BCF≌△BEF,
∴CF=EF;
(2)AF+EF=DE;
(3)同(1)得CF=EF,
∵△ABC≌△DBE,
∴AC=DE,
∴AF=AC+FC=DE+EF.
(2)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AC=AF+CF=AF+EF,即AF+EF=DE;
(3)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AF=AC+FC=DE+EF.
解答:(1)证明:连接BF,
∵△ABC≌△DBE,
∴BC=BE,
在△BCF和△BEF中,
{BC=BE∠BCF=∠BEF=90°BF=BF,
∴△BCF≌△BEF,
∴CF=EF;
(2)AF+EF=DE;
(3)同(1)得CF=EF,
∵△ABC≌△DBE,
∴AC=DE,
∴AF=AC+FC=DE+EF.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询