对那些公开源代码的软件或操作系统(如Linux)怎样查看其源代码

 我来答
丶伤感美hR0
推荐于2016-02-03 · 超过62用户采纳过TA的回答
知道答主
回答量:171
采纳率:83%
帮助的人:61.6万
展开全部
Linux内核的配置系统由三个部分组成,分别是: Makefile:分布在 Linux 内核源代码中的 Makefile,定义 Linux 内核的编译规则; 配置文件( config.in ):给用户提供配置选择的功能; 配置工具:包括配置命令解释器(对配置脚本中使用的配置命令进行解释)和配置用户界面(提供基于字符界面、基于 Ncurses 图形界面以及基于 Xwindows 图形界面的用户配置界面,各自对应于 Make config、Make menuconfig 和 make xconfig)。 这些配置工具都是使用脚本语言,如 Tcl/TK、Perl 编写的(也包含一些用 C 编写的代码)。本文并不是对配置系统本身进行分析,而是介绍如何使用配置系统。所以,除非是配置系统的维护者,一般的内核开发者无须了解它们的原理,只需要知道如何编写 Makefile 和配置文件就可以。所以,在本文中,我们只对 Makefile 和配置文件进行讨论。另外,凡是涉及到与具体 CPU 体系结构相关的内容,我们都以 ARM 为例,这样不仅可以将讨论的问题明确化,而且对内容本身不产生影响。 2. Makefile 2.1 Makefile 概述 Makefile 的作用是根据配置的情况,构造出需要编译的源文件列表,然后分别编译,并把目标代码链接到一起,最终形成 Linux 内核二进制文件。 由于Linux 内核源代码是按照树形结构组织的,所以 Makefile 也被分布在目录树中。Linux 内核中的 Makefile 以及与 Makefile 直接相关的文件有: Makefile:顶层 Makefile,是整个内核配置、编译的总体控制文件。 .config:内核配置文件,包含由用户选择的配置选项,用来存放内核配置后的结果(如 make config)。 arch/*/Makefile:位于各种 CPU 体系目录下的 Makefile,如 arch/arm/Makefile,是针对特定平台的 Makefile。 各个子目录下的 Makefile:比如 drivers/Makefile,负责所在子目录下源代码的管理。 Rules.make:规则文件,被所有的 Makefile 使用。 用户通过 make config 配置后,产生了 .config。顶层 Makefile 读入 .config 中的配置选择。顶层 Makefile 有两个主要的任务:产生 vmlinux 文件和内核模块(module)。为了达到此目的,顶层 Makefile 递归的进入到内核的各个子目录中,分别调用位于这些子目录中的 Makefile。至于到底进入哪些子目录,取决于内核的配置。在顶层 Makefile 中,有一句:include arch/$(ARCH)/Makefile,包含了特定 CPU 体系结构下的 Makefile,这个 Makefile 中包含了平台相关的信息。 位于各个子目录下的 Makefile 同样也根据 .config 给出的配置信息,构造出当前配置下需要的源文件列表,并在文件的最后有 include $(TOPDIR)/Rules.make。 Rules.make 文件起着非常重要的作用,它定义了所有 Makefile 共用的编译规则。比如,如果需要将本目录下所有的 c 程序编译成汇编代码,需要在 Makefile 中有以下的编译规则: %.s: %.c $(CC) $(CFLAGS) -S $< -o $@ 有很多子目录下都有同样的要求,就需要在各自的 Makefile 中包含此编译规则,这会比较麻烦。而 Linux 内核中则把此类的编译规则统一放置到 Rules.make 中,并在各自的 Makefile 中包含进了 Rules.make(include Rules.make),这样就避免了在多个 Makefile 中重复同样的规则。对于上面的例子,在 Rules.make 中对应的规则为: %.s: %.c $(CC) $(CFLAGS) $(EXTRA_CFLAGS) $(CFLAGS_$(*F)) $(CFLAGS_$@) -S $< -o $@ 2.2 Makefile 中的变量 顶层Makefile 定义并向环境中输出了许多变量,为各个子目录下的 Makefile 传递一些信息。有些变量,比如 SUBDIRS,不仅在顶层 Makefile 中定义并且赋初值,而且在 arch/*/Makefile 还作了扩充。 常用的变量有以下几类: 1) 版本信息 版本信息有:VERSION,PATCHLEVEL, SUBLEVEL, EXTRAVERSION,KERNELRELEASE。版本信息定义了当前内核的版本,比如 VERSION=2,PATCHLEVEL=4,SUBLEVEL=18,EXATAVERSION=-rmk7,它们共同构成内核的发行版本KERNELRELEASE:2.4.18-rmk7 2) CPU 体系结构:ARCH 在顶层 Makefile 的开头,用 ARCH 定义目标 CPU 的体系结构,比如 ARCH:=arm 等。许多子目录的 Makefile 中,要根据 ARCH 的定义选择编译源文件的列表。 3) 路径信息:TOPDIR, SUBDIRS TOPDIR 定义了 Linux 内核源代码所在的根目录。例如,各个子目录下的 Makefile 通过 $(TOPDIR)/Rules.make 就可以找到 Rules.make 的位置。 SUBDIRS 定义了一个目录列表,在编译内核或模块时,顶层 Makefile 就是根据 SUBDIRS 来决定进入哪些子目录。SUBDIRS 的值取决于内核的配置,在顶层 Makefile 中 SUBDIRS 赋值为 kernel drivers mm fs net ipc lib;根据内核的配置情况,在 arch/*/Makefile 中扩充了 SUBDIRS 的值,参见4)中的例子。 4) 内核组成信息:HEAD, CORE_FILES, NETWORKS, DRIVERS, LIBS Linux 内核文件 vmlinux 是由以下规则产生的: vmlinux: $(CONFIGURATION) init/main.o init/version.o linuxsubdirs $(LD) $(LINKFLAGS) $(HEAD) init/main.o init/version.o --start-group $(CORE_FILES) $(DRIVERS) $(NETWORKS) $(LIBS) --end-group -o vmlinux 可以看出,vmlinux 是由 HEAD、main.o、version.o、CORE_FILES、DRIVERS、NETWORKS 和 LIBS 组成的。这些变量(如 HEAD)都是用来定义连接生成 vmlinux 的目标文件和库文件列表。其中,HEAD在arch/*/Makefile 中定义,用来确定被最先链接进 vmlinux 的文件列表。比如,对于 ARM 系列的 CPU,HEAD 定义为: HEAD := arch/arm/kernel/head-$(PROCESSOR).o arch/arm/kernel/init_task.o 表明head-$(PROCESSOR).o 和 init_task.o 需要最先被链接到 vmlinux 中。PROCESSOR 为 armv 或 armo,取决于目标 CPU。 CORE_FILES,NETWORK,DRIVERS 和 LIBS 在顶层 Makefile 中定义,并且由 arch/*/Makefile 根据需要进行扩充。 CORE_FILES 对应着内核的核心文件,有 kernel/kernel.o,mm/mm.o,fs/fs.o,ipc/ipc.o,可以看出,这些是组成内核最为重要的文件。同时,arch/arm/Makefile 对 CORE_FILES 进行了扩充: # arch/arm/Makefile # If we have a machine-specific directory, then include it in the build. MACHDIR := arch/arm/mach-$(MACHINE) ifeq ($(MACHDIR),$(wildcard $(MACHDIR))) SUBDIRS += $(MACHDIR) CORE_FILES := $(MACHDIR)/$(MACHINE).o $(CORE_FILES) endif HEAD := arch/arm/kernel/head-$(PROCESSOR).o arch/arm/kernel/init_task.o SUBDIRS += arch/arm/kernel arch/arm/mm arch/arm/lib arch/arm/nwfpe CORE_FILES := arch/arm/kernel/kernel.o arch/arm/mm/mm.o $(CORE_FILES) LIBS := arch/arm/lib/lib.a $(LIBS) 5) 编译信息:CPP, CC, AS, LD, AR,CFLAGS,LINKFLAGS 在Rules.make 中定义的是编译的通用规则,具体到特定的场合,需要明确给出编译环境,编译环境就是在以上的变量中定义的。针对交叉编译的要求,定义了 CROSS_COMPILE。比如: CROSS_COMPILE = arm-linux- CC = $(CROSS_COMPILE)gcc LD = $(CROSS_COMPILE)ld ...... CROSS_COMPILE 定义了交叉编译器前缀 arm-linux-,表明所有的交叉编译工具都是以 arm-linux- 开头的,所以在各个交叉编译器工具之前,都加入了 $(CROSS_COMPILE),以组成一个完整的交叉编译工具文件名,比如 arm-linux-gcc。 CFLAGS 定义了传递给 C 编译器的参数。 LINKFLAGS 是链接生成 vmlinux 时,由链接器使用的参数。LINKFLAGS 在 arm/*/Makefile 中定义,比如: # arch/arm/Makefile LINKFLAGS :=-p -X -T arch/arm/vmlinux.lds 6) 配置变量CONFIG_* .config 文件中有许多的配置变量等式,用来说明用户配置的结果。例如 CONFIG_MODULES=y 表明用户选择了 Linux 内核的模块功能。 .config 被顶层 Makefile 包含后,就形成许多的配置变量,每个配置变量具有确定的值:y 表示本编译选项对应的内核代码被静态编译进 Linux 内核;m 表示本编译选项对应的内核代码被编译成模块;n 表示不选择此编译选项;如果根本就没有选择,那么配置变量的值为空。 2.3 Rules.make 变量 前面讲过,Rules.make 是编译规则文件,所有的 Makefile 中都会包括 Rules.make。Rules.make 文件定义了许多变量,最为重要是那些编译、链接列表变量。 O_OBJS,L_OBJS,OX_OBJS,LX_OBJS:本目录下需要编译进 Linux 内核 vmlinux 的目标文件列表,其中 OX_OBJS 和 LX_OBJS 中的 "X" 表明目标文件使用了 EXPORT_SYMBOL 输出符号。 M_OBJS,MX_OBJS:本目录下需要被编译成可装载模块的目标文件列表。同样,MX_OBJS 中的 "X" 表明目标文件使用了 EXPORT_SYMBOL 输出符号。 O_TARGET,L_TARGET:每个子目录下都有一个 O_TARGET 或 L_TARGET,Rules.make 首先从源代码编译生成 O_OBJS 和 OX_OBJS 中所有的目标文件,然后使用 $(LD) -r 把它们链接成一个 O_TARGET 或 L_TARGET。O_TARGET 以 .o 结尾,而 L_TARGET 以 .a 结尾。
AiPPT
2024-09-19 广告
随着AI技术的飞速发展,如今市面上涌现了许多实用易操作的AI生成工具1、简介:AiPPT: 这款AI工具智能理解用户输入的主题,提供“AI智能生成”和“导入本地大纲”的选项,生成的PPT内容丰富多样,可自由编辑和添加元素,图表类型包括柱状图... 点击进入详情页
本回答由AiPPT提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式