已知数列an是公差为2的等差数列,它的前n项 和为sn且a1+1:a3+1:a7+1成等比数列。求
已知数列an是公差为2的等差数列,它的前n项和为sn且a1+1:a3+1:a7+1成等比数列。求数列1/sn的前n项和Tn...
已知数列an是公差为2的等差数列,它的前n项 和为sn且a1+1:a3+1:a7+1成等比数列。求数列1/sn的前n项和Tn
展开
展开全部
a1+1,a3+1,a7+1成等比数列,则
(a3+1)^2=(a1+1)(a7+1)
(a1+2d+1)^2=(a1+1)(a1+6d+1)
d=2代入,整理,得
4a1=12
a1=3
an=a1+(n-1)d=3+2(n-1)=2n+1
Sn=(a1+an)n/2=(3+2n+1)n/2=(n+2)n
1/Sn=1/[n(n+2)]=(1/2)[1/n -1/(n+2)]
Tn=1/S1+1/S2+...+1/Sn
=(1/2)[1/1-1/3+1/2-1/4+...+1/n -1/(n+2)]
=(1/2)[1+1/2+...+1/n-(1/3+1/4+...+1/(n+2)]
=(1/2)[1+1/2 -1/(n+1)-1/(n+2)]
=3/4 -1/[2(n+1)] -1/[2(n+2)]
(a3+1)^2=(a1+1)(a7+1)
(a1+2d+1)^2=(a1+1)(a1+6d+1)
d=2代入,整理,得
4a1=12
a1=3
an=a1+(n-1)d=3+2(n-1)=2n+1
Sn=(a1+an)n/2=(3+2n+1)n/2=(n+2)n
1/Sn=1/[n(n+2)]=(1/2)[1/n -1/(n+2)]
Tn=1/S1+1/S2+...+1/Sn
=(1/2)[1/1-1/3+1/2-1/4+...+1/n -1/(n+2)]
=(1/2)[1+1/2+...+1/n-(1/3+1/4+...+1/(n+2)]
=(1/2)[1+1/2 -1/(n+1)-1/(n+2)]
=3/4 -1/[2(n+1)] -1/[2(n+2)]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询