初中数学的。根号里面开根号的题目怎么做(急)

全都忘的差不多了。。。。大家帮忙看看如果时间段+分的要步骤步骤。。。。。谢谢(如果写答案的话麻烦检查一下拉嘻嘻)√18=3√2√27=3√3√48=4√3√44=2√11... 全都忘的差不多了。。。。
大家帮忙看看
如果时间段 + 分的 要步骤 步骤。。 。。。谢谢
(如果写答案的话 麻烦检查一下拉 嘻嘻)
√18=3√2
√27=3√3
√48=4√3
√44=2√11
√125=3√3
√153=3√51
√225=5√9
√72=6√3

3√18-√32=
5√32-√200=
2√27+3√3-√12=
2√20-√45+√500=

化简之类的:

(√3-√2)(√3+√2)=
(√3-√2)(√3-√20)=
(√5-√3)(√5-√3)=
(2√5+1)(√5-1)=
(4√5-1)(2√5-1)=
(√11-3)(√11+3)=

还有几个这样的:
3x+4y=18
5x-3y=1

x,y 分别是多少?

y=3x+4
3y-x=4

x,y 是?

3x-4y=2
x+3y=-1
x,y 是?

最后几个化简。。。 。。。谢谢拉 (^ 是平方的意思)
x^+5x+6=

x^-6x+8=

x^-5x-24=

3x^-5x+2=

8x^+18+7=

6x^-11x-10=

5x^-80=

好了 总共就这么多了
谢谢 还有 谁能告诉我这从头到尾我列的这些都是数学的什么?
是方程啊 还是什么的?我现在全忘了 都不知道从哪里补好

我说了 要有详细的步骤
我会加分的
在一次说声谢谢!
还有 谁能给几个学习初中数学的网址 最好是详细点的 谢谢
展开
情感导师九九
高能答主

2019-10-12 · 人生如逆旅,你我亦行人!
情感导师九九
采纳数:370 获赞数:44430

向TA提问 私信TA
展开全部

根号里面开根号的数学题目做法:先算小根号里面的,然后所得的数再开一次根号就可以了。

题中列的这些前面两个个部分是关于根号的化简和计算,中间的那几部分是二元一次方程,即有两个未知数,指数为一的计算,后面就是方程的化简了,多利用公式,初中数学课本上有很多公式,找到类似的,直接代入即可。


扩展资料:

初中数学学习方法:

1,求教与自学相结合 

在学习过程中,即要争取教师的指导和帮助,但是又不能处处依靠教师, 必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基 础上去寻求教师和同学的帮助。 


2,学习与思考相结合 

在学习过程中,对课本的内容要认真研究,提出疑问,追本究源。对每 一个概念、公式、定理都要弄清其来龙去脉、前因后果、内在联系,以及蕴 含于推导过程中的数学思想和方法。在解决问题时,要尽量采用不同的途径 和方法,要克服那种死守书本、机械呆板、不知变通的学习方法。 


3,学用结合,勤于实践 

在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中 抽象为理论的演变过程。对所学理论知识,要在更大范围内寻求它的具体实 例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。 


4,博观约取,由博返约 

课本是学生获得知识的主要来源,但不是唯一的来源。在学习过程中, 除了认真研究课本以外,还要阅读有关的课外资料,来扩大知识领域。同时 在广泛阅读的基础上,进行认真研究,掌握其知识结构。 


5,既有模仿,又有创新 

模仿是数学学习中不可缺少的学习方法,但是决不能机械地模仿,应该 在消化理解的基础上,开动脑筋,提出自己的见解和看法,而不拘泥于已有 的框框,不囿于现成的模式。

莎娃a飞轮海
2008-09-14
知道答主
回答量:7
采纳率:0%
帮助的人:0
展开全部
一元二次方程的解法有如下几种:

第一种:运用因式分解的方法,而因式分解的方法有:(1)十字相乘法(又包括二次项系数为1的和二次项系数不为1,但又不是0的),(2)公式法:(包括完全平方公式,平方差公式,).(3)提取公因式

例1:X^2-4X+3=0
本题运用因式分解法中的十字相乘法,原方程分解为(X-3)(X-1)=0 ,可得出X=3或1。

例2:X^2-8X+16=0
本题运用因式分解法中的完全平方公式,原方程分解为(X-4)^2=0 可以得出X1=4 X2=4(注意:碰到此类问题,一定要写X1=X2=某个数,不能只写X=某个数,因为一元二次方程一定有两个根,两个根可以相同,也可以不同)

例3:X^2-9=0
本题运用因式分解法中的平方差公式,原方程分解为(X-3)(X+3)=0 ,可以得出X1=3,X2=-3。

例4:X^2-5X=0
本题运用因式分解法中的提取公因式法来解,原方程分解为X(X-5)=0 ,可以得出X1=0 ,X2=5

第二种方法是配方法,比较复杂,下面举一个例来说明怎样用配方法来解一元二次方程:

X^2+2X-3=0
第一步:先在X^2+2X后加一项常数项,使之能成为一项完全平方式,那么根据题目,我们可以得知应该加一个1这样就变成了(X+1)^2。
第二步:原式是X^2+2X-3,而(X+1)^2=X^2+2X+1,两个葵花子对比之后发现要在常数项后面减去4,才会等于原式,所以最后用配方法后得到的式子为(X+1)^2-4=0,最后可解方程。
还有一种方法就是开平方法,例如:X^2=121,那么X1=11,X2=-11。
最后如果用了上面所有的方法都无法解方程,那就只能像楼上所说的用求根公式了。

定理就是韦达定理,还有根的判别式,韦达定理就是一元二方程ax^2+bx+c=0(a不等于0)二根之和就是-b/a,两根之积就是c/a

举例:X^2-4X+3=0 两根之和就是-(-4/1)=4,两根之积就是3/1=3,(你可以自己解一下,看看是否正确)。

因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让

两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个

根。这种解一元二次方程的方法叫做因式分解法。

例4.用因式分解法解下列方程:

(1) (x+3)(x-6)=-8 (2) 2x2+3x=0

(3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学)

(1)解:(x+3)(x-6)=-8 化简整理得

x2-3x-10=0 (方程左边为二次三项式,右边为零)

(x-5)(x+2)=0 (方程左边分解因式)

∴x-5=0或x+2=0 (转化成两个一元一次方程)

∴x1=5,x2=-2是原方程的解。

(2)解:2x2+3x=0

x(2x+3)=0 (用提公因式法将方程左边分解因式)

∴x=0或2x+3=0 (转化成两个一元一次方程)

∴x1=0,x2=-是原方程的解。

注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。

(3)解:6x2+5x-50=0

(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)

∴2x-5=0或3x+10=0

∴x1=, x2=- 是原方程的解。

(4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 •2 ,∴此题可用因式分解法)

(x-2)(x-2 )=0

∴x1=2 ,x2=2是原方程的解。

小结:

一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般

形式,同时应使二次项系数化为正数。

直接开平方法是最基本的方法。

公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式

法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程

是否有解。

配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法

解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方

法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。

例5.用适当的方法解下列方程。(选学)

(1)4(x+2)2-9(x-3)2=0 (2)x2+(2-)x+ -3=0

(3) x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0

分析:(1)首先应观察题目有无特点,不要盲目地先做乘法运算。观察后发现,方程左边可用平方差

公式分解因式,化成两个一次因式的乘积。

(2)可用十字相乘法将方程左边因式分解。

(3)化成一般形式后利用公式法解。

(4)把方程变形为 4x2-2(2m+5)x+(m+2)(m+3)=0,然后可利用十字相乘法因式分解。

(1)解:4(x+2)2-9(x-3)2=0

[2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0

(5x-5)(-x+13)=0

5x-5=0或-x+13=0

∴x1=1,x2=13

(2)解: x2+(2- )x+ -3=0

[x-(-3)](x-1)=0

x-(-3)=0或x-1=0

∴x1=-3,x2=1

(3)解:x2-2 x=-

x2-2 x+ =0 (先化成一般形式)

△=(-2 )2-4 ×=12-8=4>0

∴x=

∴x1=,x2=

(4)解:4x2-4mx-10x+m2+5m+6=0

4x2-2(2m+5)x+(m+2)(m+3)=0

[2x-(m+2)][2x-(m+3)]=0

2x-(m+2)=0或2x-(m+3)=0

∴x1= ,x2=

例6.求方程3(x+1)2+5(x+1)(x-4)+2(x-4)2=0的二根。 (选学)

分析:此方程如果先做乘方,乘法,合并同类项化成一般形式后再做将会比较繁琐,仔细观察题目,我

们发现如果把x+1和x-4分别看作一个整体,则方程左边可用十字相乘法分解因式(实际上是运用换元的方

法)

解:[3(x+1)+2(x-4)][(x+1)+(x-4)]=0

即 (5x-5)(2x-3)=0

∴5(x-1)(2x-3)=0

(x-1)(2x-3)=0

∴x-1=0或2x-3=0

∴x1=1,x2=是原方程的解。

例7.用配方法解关于x的一元二次方程x2+px+q=0

解:x2+px+q=0可变形为

x2+px=-q (常数项移到方程右边)

x2+px+( )2=-q+()2 (方程两边都加上一次项系数一半的平方)

(x+)2= (配方)

当p2-4q≥0时,≥0(必须对p2-4q进行分类讨论)

∴x=- ±=

∴x1= ,x2=

当p2-4q<0时,<0此时原方程无实根。

说明:本题是含有字母系数的方程,题目中对p, q没有附加条件,因此在解题过程中应随时注意对字母

取值的要求,必要时进行分类讨论。

练习:

(一)用适当的方法解下列方程:

1. 6x2-x-2=0 2. (x+5)(x-5)=3

3. x2-x=0 4. x2-4x+4=0

5. 3x2+1=2x 6. (2x+3)2+5(2x+3)-6=0

(二)解下列关于x的方程

1.x2-ax+-b2=0 2. x2-( + )ax+ a2=0

练习参考答案:

(一)1.x1=- ,x2= 2.x1=2,x2=-2

3.x1=0,x2= 4.x1=x2=2 5.x1=x2=

6.解:(把2x+3看作一个整体,将方程左边分解因式)

[(2x+3)+6][(2x+3)-1]=0

即 (2x+9)(2x+2)=0

∴2x+9=0或2x+2=0

∴x1=-,x2=-1是原方程的解。

(二)1.解:x2-ax+( +b)( -b)=0 2、解:x2-(+ )ax+ a• a=0

[x-( +b)] [x-( -b)]=0 (x- a)(x-a)=0

∴x-( +b)=0或x-( -b) =0 x- a=0或x-a=0

∴x1= +b,x2= -b是 ∴x1= a,x2=a是

原方程的解。 原方程的解。

测试

选择题

1.方程x(x-5)=5(x-5)的根是( )

A、x=5 B、x=-5 C、x1=x2=5 D、x1=x2=-5

2.多项式a2+4a-10的值等于11,则a的值为( )。

A、3或7 B、-3或7 C、3或-7 D、-3或-7

3.若一元二次方程ax2+bx+c=0中的二次项系数,一次项系数和常数项之和等于零,那么方程必有一个

根是( )。

A、0 B、1 C、-1 D、±1

4. 一元二次方程ax2+bx+c=0有一个根是零的条件为( )。

A、b≠0且c=0 B、b=0且c≠0

C、b=0且c=0 D、c=0

5. 方程x2-3x=10的两个根是( )。

A、-2,5 B、2,-5 C、2,5 D、-2,-5

6. 方程x2-3x+3=0的解是( )。

A、 B、 C、 D、无实根

7. 方程2x2-0.15=0的解是( )。

A、x= B、x=-

C、x1=0.27, x2=-0.27 D、x1=, x2=-

8. 方程x2-x-4=0左边配成一个完全平方式后,所得的方程是( )。

A、(x-)2= B、(x- )2=-

C、(x- )2= D、以上答案都不对

9. 已知一元二次方程x2-2x-m=0,用配方法解该方程配方后的方程是( )。

A、(x-1)2=m2+1 B、(x-1)2=m-1 C、(x-1)2=1-m D、(x-1)2=m+1

答案与解析

答案:1.C 2.C 3.B 4.D 5.A 6.D 7.D 8.C 9.D

解析:

1.分析:移项得:(x-5)2=0,则x1=x2=5,

注意:方程两边不要轻易除以一个整式,另外一元二次方程有实数根,一定是两个。

2.分析:依题意得:a2+4a-10=11, 解得 a=3或a=-7.

3.分析:依题意:有a+b+c=0, 方程左侧为a+b+c, 且具仅有x=1时, ax2+bx+c=a+b+c,意味着当x=1

时,方程成立,则必有根为x=1。

4.分析:一元二次方程 ax2+bx+c=0若有一个根为零,

则ax2+bx+c必存在因式x,则有且仅有c=0时,存在公因式x,所以 c=0.

另外,还可以将x=0代入,得c=0,更简单!

5.分析:原方程变为 x2-3x-10=0,

则(x-5)(x+2)=0

x-5=0 或x+2=0

x1=5, x2=-2.

6.分析:Δ=9-4×3=-3<0,则原方程无实根。

7.分析:2x2=0.15

x2=

x=±

注意根式的化简,并注意直接开平方时,不要丢根。

8.分析:两边乘以3得:x2-3x-12=0,然后按照一次项系数配方,x2-3x+(-)2=12+(- )2,

整理为:(x-)2=

方程可以利用等式性质变形,并且 x2-bx配方时,配方项为一次项系数-b的一半的平方。

9.分析:x2-2x=m, 则 x2-2x+1=m+1

则(x-1)2=m+1.

中考解析

考题评析

1.(甘肃省)方程的根是( )

(A) (B) (C) 或 (D) 或

评析:因一元二次方程有两个根,所以用排除法,排除A、B选项,再用验证法在C、D选项中选出正确

选项。也可以用因式分解的方法解此方程求出结果对照选项也可以。选项A、B是只考虑了一方面忘记了一元

二次方程是两个根,所以是错误的,而选项D中x=-1,不能使方程左右相等,所以也是错误的。正确选项为

C。

另外常有同学在方程的两边同时除以一个整式,使得方程丢根,这种错误要避免。

2.(吉林省)一元二次方程的根是__________。

评析:思路,根据方程的特点运用因式分解法,或公式法求解即可。

3.(辽宁省)方程的根为( )

(A)0 (B)–1 (C)0,–1 (D)0,1

评析:思路:因方程为一元二次方程,所以有两个实根,用排除法和验证法可选出正确选项为C,而A、

B两选项只有一个根。D选项一个数不是方程的根。另外可以用直接求方程根的方法。

4.(河南省)已知x的二次方程的一个根是–2,那么k=__________。

评析:k=4.将x=-2代入到原方程中去,构造成关于k的一元二次方程,然后求解。

5.(西安市)用直接开平方法解方程(x-3)2=8得方程的根为( )

(A)x=3+2 (B)x=3-2

(C)x1=3+2 ,x2=3-2 (D)x1=3+2,x2=3-2

评析:用解方程的方法直接求解即可,也可不计算,利用一元二次方程有解,则必有两解及8的平方

根,即可选出答案。

你能行 的加油
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
mengyan963
推荐于2017-11-26 · TA获得超过117个赞
知道答主
回答量:19
采纳率:0%
帮助的人:0
展开全部
√18=3√2
√27=3√3
√48=4√3
√44=2√11
√125=5√5
√153=3√17
√225=15
√72=6√2

3√18-√32=9√2-4√2=5√2
5√32-√200=20√2-10√2=10√2
2√27+3√3-√12=6√3+3√3-2√3=7√3
2√20-√45+√500= 4√5-3√5+10√5=11√5

化简之类的:

(√3-√2)(√3+√2)=3-2=1(平方差公式)
(√3-√2)(√3-√20)= 3-√2*√3-√20*√3+√2*√20=3-√6-2√15+2√10
(√5-√3)(√5-√3)=5+3-2√15=8-2√15(完全平方差)
(2√5+1)(√5-1)=(√5+1)(√5-1)+√5-1=5-1+√5-1=3+√5(分配率,平方差)
(4√5-1)(2√5-1)=(2√5-1)^+2√5(2√5-1)=10+1-4√5+10-2√5=21-6√5(分配率,完全平方差)
(√11-3)(√11+3)= 11-3=8(平方差)

3x+4y=18 ①
5x-3y=1 ②
x,y 分别是多少?
解:①*3+②*4得
29X=58
X=2
带入②得Y=3
∴X=2
Y=3

y=3x+4 ①
3y-x=4 ②
x,y 是?
解:①*3-②得
X=-8
代入①得
Y=-20

3x-4y=2 ①
x+3y=-1 ②
x,y 是?
解:3②-①得
13Y=-5
Y=-5/13
代入②得
X=2/13

因式分解.
(口诀:一提二套三分组)
提是提公因式.然后套公式(平方差,完全平方和十字相乘)不能分解,就分组分解(有时侯会用到添拆项的技巧)
x^+5x+6= (X+2)(X+3)

x^-6x+8= (X-2)(X-4)

x^-5x-24= (X-8)(X+3)

3x^-5x+2= (X-1)(3X-2)

8x^+18+7=(2X+1)(4X+7)

6x^-11x-10= (2X+5)(3X-2)

5x^-80= 5(X^-16)=5(X+4)(x-4)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
nilic
2008-09-13 · TA获得超过2072个赞
知道小有建树答主
回答量:793
采纳率:0%
帮助的人:0
展开全部
先纠正你上面错的。
√125=5√5
√153=3√17
√225=15
√72=6√2

3√18-√32=9√2-4√2=5√2
5√32-√200=20√2-10√2=10√2
2√27+3√3-√12= 6√3+3√3-2√3=7√3
2√20-√45+√500= 4√5-3√5+10√5=11√5

(√3-√2)(√3+√2)= 3-2=1
(√3-√2)(√3-√20)= 3-2√15-√6+2√10
(√5-√3)(√5-√3)= 5+3-2√15=802√15
(2√5+1)(√5-1)= 10-2√5+√5-1=9-√5
(4√5-1)(2√5-1)= 40-4√5-2√5+1=41-6√5
(√11-3)(√11+3)= 11-9=2

这部分是根式化简

3x+4y=18
5x-3y=1

x,y 分别是多少
上式+下式有:
8x+y=19,y=19-8x,代入下式
5x-3(19-8x)=1
x=2,
所以y=19-8*2=3

y=3x+4
3y-x=4

x,y 是?

上式代入下式
3(3x+4)-x=4
x=-1,所以y=3(-1)+4=1

3x-4y=2
x+3y=-1
x,y 是?
下式化为x=-1-3y,代入上式
3(-1-3y)-4y=2
y=-5/13,x=-1-3*(-5/13)=2/13

这部分是2元一次方程求解

化简
x^+5x+6= (x+2)(x+3)

x^-6x+8= (x-2)(x-4)

x^-5x-24= (x-8)(x+3)

3x^-5x+2=(3x-2)(x-1)

8x^+18+7= (2x+1)(4x+7)

6x^-11x-10= (2x-5)(3x+2)

5x^-80= ..这个已经最简单了。 。。。。还想怎么化?

这部分是分解因式

好了,每个部分都解答了。。。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
一路陪你听风
2008-09-14 · TA获得超过106个赞
知道答主
回答量:19
采纳率:0%
帮助的人:0
展开全部
加油啊
你可以去看看初中相应知识的书也许更清晰
我今年刚高一呢 我是这么认为的
别人再怎么讲可能你还是蒙蒙的
还是自己去看看吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式