2个回答
展开全部
S(n+1)-Sn=a(n+1)=[(n+2)/n]Sn S(n+1)=[(n+2)/n]Sn+Sn=[2(n+1)/n]Sn=2(n+1)×[Sn/n],所以, [S(n+1)/(n+1)]:[Sn/n]=2=常数。即数列{Sn/n}是等比数列,公比为q=2,首项为S1/1=a1=1,所以Sn/n=1×2^(n-1),从而Sn=n×2^(n-1)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询