展开全部
数学学科的特点是高度的抽象理论与严密的逻辑推理,要通过学习数学提高抽象思维能力,逻辑推理能力,数学运算能力以及应用数学解决实际问题的能力。任何一门数学课的内容都是由基本概念(定义)、基本理论(性质与定理)、基本运算(计算)及应用四部分组成,要学好数学就要在这四个部分上认真钻研刻苦努力,多下功夫。
基本概念要清楚,要读懂,要理解透彻、叙述准确,不能似是而非、一知半解。数学的推理完全靠基本概念,基本概念不清楚,很多内容就学不懂,无法掌握和运用。例如,线性代数中向量组的线性相关性、线性无关性,向量组的秩与极大无关组,矩阵的相似对角形等,初学者往往掌握不深不透,这就要通过复习与作习题的过程中逐步深入、反复思考、彻底读懂。
基本理论是数学推理论证的核心,是由一些概念、性质与定理组成的,有些定理并不要求每位初学者都会证明,但定理的条件和结论一定要清楚,要熟悉定理并学会使用定理,有些内容是必须牢记的。例如,矩阵的初等变换是线性代数的重要内容之一。求逆方阵、求矩阵的秩,解线性方程组等都离不开矩阵的初等变换,要懂得其中的道理,为什么可以用初等变换解决以上问题,理论依据是什么?是作初等行变换还是列变换。又如,线性方程组解的存在定理及解的结构定理,判断向量组线性相关与线性无关的有关定理,都是必须牢记的。在概率论的学习中,微积分知识对于理解概率统计的理论很重要。
掌握数学概念和理论并学会运用主要靠作题,在读懂了内容后要作题,而且要作一定数量的题,才能不断加深对内容的理解,提高解题能力,熟才能生巧,捷径是没有的,“不作题等于没学数学”这是大家公认的事实。在解题过程中要不断总结思路和方法,掌握解题规律性,通过作题提高分析问题、解决问题的能力,也就是逐步提高数学素养。我大学时期的数学老师是北大的研究生(当时正准备去美国读数学博士),福建省当年高考的状元,他高考数学是120分(满分),物理99分,……他告诉我学习微积分的经验就是作四万道题,保证微积分通过(包括考研微积分部分)。——作题的重要性可见一般。
基本概念要清楚,要读懂,要理解透彻、叙述准确,不能似是而非、一知半解。数学的推理完全靠基本概念,基本概念不清楚,很多内容就学不懂,无法掌握和运用。例如,线性代数中向量组的线性相关性、线性无关性,向量组的秩与极大无关组,矩阵的相似对角形等,初学者往往掌握不深不透,这就要通过复习与作习题的过程中逐步深入、反复思考、彻底读懂。
基本理论是数学推理论证的核心,是由一些概念、性质与定理组成的,有些定理并不要求每位初学者都会证明,但定理的条件和结论一定要清楚,要熟悉定理并学会使用定理,有些内容是必须牢记的。例如,矩阵的初等变换是线性代数的重要内容之一。求逆方阵、求矩阵的秩,解线性方程组等都离不开矩阵的初等变换,要懂得其中的道理,为什么可以用初等变换解决以上问题,理论依据是什么?是作初等行变换还是列变换。又如,线性方程组解的存在定理及解的结构定理,判断向量组线性相关与线性无关的有关定理,都是必须牢记的。在概率论的学习中,微积分知识对于理解概率统计的理论很重要。
掌握数学概念和理论并学会运用主要靠作题,在读懂了内容后要作题,而且要作一定数量的题,才能不断加深对内容的理解,提高解题能力,熟才能生巧,捷径是没有的,“不作题等于没学数学”这是大家公认的事实。在解题过程中要不断总结思路和方法,掌握解题规律性,通过作题提高分析问题、解决问题的能力,也就是逐步提高数学素养。我大学时期的数学老师是北大的研究生(当时正准备去美国读数学博士),福建省当年高考的状元,他高考数学是120分(满分),物理99分,……他告诉我学习微积分的经验就是作四万道题,保证微积分通过(包括考研微积分部分)。——作题的重要性可见一般。
参考资料: http://zhidao.baidu.com/question/12996025.html?si=2
展开全部
对于每位刚踏入大学的同学来说,要从简单、基础的数学思维转到对高度抽象、复杂的高等数学的学习中确实有一定的难度,但似乎越难的学科越具有其独特的魅力,使你不断地掏出心思去学它、懂它、理解它、体会它,从而真正感到它内在的美,为了共勉,下面谈谈我这两年来学习高等数学的一些体会。 要学好高等数学最基本的就是要做好课前预习,做好课堂笔记及讲究解题的方法、做好课后的复习。这三个步骤是学好高等数学的重要环节。 做好课前预习是学好高等数学的重要环节,它为做好后面两个步骤打下基础。我们应对各个章节有一个总的系统的认识,从结构上去把握它,在头脑中初步形成知识体系的框架,对它所包含的内容做一个总体及全面的了解,然后逐步细化、深化,由浅入深,由易到难,这样我们才能把握全局,运筹帷幄,分清主次,使学习有的放矢,从而使我们不会被老师牵着鼻子走。对老师要讲的内容,都能知道知识点的意义,从而能使听课收到更好的效果。 做好课堂笔记是学好高等数学必不可少的环节,它为下一步复习提供资料。做课堂笔记是有技巧的,要记那些书本里没有地东西、具有概括性的和一些技巧性的解题方法、常见的题型,这为你以后考试复习提供很好的资料。有很多同学都不喜欢做课堂笔记,这对学习来说是不利的。因为每个人的精力有限,不可能将每节课老师在课堂中讲的内容全部都记住,而往往在考试中的内容都是老师在课堂中讲过的,如果你没做笔记,到复习时什么资料都没有,脑子一片空白,到考试时无从下手。同学们你想想这不是价钱自己吃亏吗?并且,做课堂笔记不仅为你考试提供复习的资料,上课又不会睡觉,你还可以通过做笔记来练字,真是两全其美,同学们何乐而不为呢? 学好高等数学还要注意的一点就是在解题过程中有注重解题方法,特别是在解证明题时,很多同学都怕,因为有些证明题抽象性、概括性很强,这使基础不好的同学无从下手,因而这就讲究解题方法。“搭桥”法是解证明题中最好的方法,首先摆出已知的、要证的,然后通过搭桥将其内在的联系起来,这样很快就能将其解决:在解计算题过程中,要注意总结解题方法,要做到举一反三,很多的题目的解法是有很多种的。这样,你要注重概括总结,寻找最简单解法,从而做到既简洁又少时。 课后及时复习可以巩固你所学的内容,使你对所学内容进一步了解。这样做起作业得心应手。如何做好及时复习呢?在你学完某节内容的当天就得回去看所学的内容,结合书本知识和课堂笔记对所学的内容进行深一步的研究,及时找出不能理解的地方,反复看书慢慢理解它,这样你就能将你学过的知识慢慢地消化变成自己的东西。此后,再过一两个星期你就得回去乍你以前学过的内容,温习那些内容。俗话说:“温故而知新”。到考试时你就不会那么紧张,因为你已经胸有成竹了。同学们!高等数学并不可怕,可怕的是你自己没有信心和勇气去学好它。其实,每一门学科都有其固有的规律和结构,以及与这些规律和结构相适应的思想方法,掌握好的学习方法,加上自己聪明才智和刻苦努力,相信你一定能在高等数学的海洋中自由徜徉。
学好高等数学还要注意的一点就是在解题过程中有注重解题方法,特别是在解证明题时,很多同学都怕,因为有些证明题抽象性、概括性很强,这使基础不好的同学无从下手,因而这就讲究解题方法。“搭桥”法是解证明题中最好的方法,首先摆出已知的、要证的,然后通过搭桥将其内在的联系起来,这样很快就能将其解决
要自己尝试着做,一时做不出来多想两天,不要急着看答案,否则会形成依赖心理,以后越做没信心。形成恶性循环。。
学好高等数学还要注意的一点就是在解题过程中有注重解题方法,特别是在解证明题时,很多同学都怕,因为有些证明题抽象性、概括性很强,这使基础不好的同学无从下手,因而这就讲究解题方法。“搭桥”法是解证明题中最好的方法,首先摆出已知的、要证的,然后通过搭桥将其内在的联系起来,这样很快就能将其解决
要自己尝试着做,一时做不出来多想两天,不要急着看答案,否则会形成依赖心理,以后越做没信心。形成恶性循环。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
看一下例题,按标准模式走就可以了
已知条件,
通过定理 公理,知道。。。
由此计算
结论
已知条件,
通过定理 公理,知道。。。
由此计算
结论
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询