已知:如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,点P为BC上任意一点,PE⊥AB于E,PF⊥AC于点F.(1)求
已知:如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,点P为BC上任意一点,PE⊥AB于E,PF⊥AC于点F.(1)求证:△ADF∽△BDE;(2)求证:△DEF...
已知:如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,点P为BC上任意一点,PE⊥AB于E,PF⊥AC于点F.(1)求证:△ADF∽△BDE;(2)求证:△DEF∽△ABC.
展开
展开全部
证明:(1)∵∠BAC=90°,AD⊥BC,PE⊥AB,PF⊥AC,
∴四边形AEPF为矩形,
∴AF=EP,
∵∠EBP=∠DBA,
∴Rt△BEP∽Rt△BDA,
∴
=
,
∴
=
,即
=
,
∵∠DAF+∠BAD=90°,∠B+∠BAD=90°,
∴∠DAF=∠B,
∴△ADF∽△BDE;
(2)∵△ADF∽△BDE,
∴∠ADF=∠BDE,
=
,即
=
而∠BDF+∠ADE=90°,
∴∠ADF+∠ADE=90°,∠DEF=90°,
∴∠ADB=∠FDE,
∴△DEF∽△DBA,
∴∠DEF=∠B,
∴Rt△DEF∽Rt△ABC.
∴四边形AEPF为矩形,
∴AF=EP,
∵∠EBP=∠DBA,
∴Rt△BEP∽Rt△BDA,
∴
EP |
AD |
BE |
BD |
∴
AF |
AD |
BE |
BD |
AF |
BE |
AD |
BD |
∵∠DAF+∠BAD=90°,∠B+∠BAD=90°,
∴∠DAF=∠B,
∴△ADF∽△BDE;
(2)∵△ADF∽△BDE,
∴∠ADF=∠BDE,
DF |
DE |
AD |
BD |
DF |
AD |
DE |
BD |
而∠BDF+∠ADE=90°,
∴∠ADF+∠ADE=90°,∠DEF=90°,
∴∠ADB=∠FDE,
∴△DEF∽△DBA,
∴∠DEF=∠B,
∴Rt△DEF∽Rt△ABC.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询