已知数列{an},Sn是其n前项的和,且满足3an=2Sn+n(n∈N*)(1)求证:数列{an+12}为等比数列;(2)记Tn
已知数列{an},Sn是其n前项的和,且满足3an=2Sn+n(n∈N*)(1)求证:数列{an+12}为等比数列;(2)记Tn=S1+S2+L+Sn,求Tn的表达式;(...
已知数列{an},Sn是其n前项的和,且满足3an=2Sn+n(n∈N*)(1)求证:数列{an+12}为等比数列;(2)记Tn=S1+S2+L+Sn,求Tn的表达式;(3)记Cn=23(an+12),求数列{nCn}的前n项和Pn.
展开
1个回答
展开全部
(1)∵3an=2Sn+n,
∴a1=1,
当n≥2时,3(an-an-1)=2an+1,即an=3an-1+1,
∴an+
=3an-1+1+
=3(an-1+
),
∴数列{an+
}是首项为
,公比为3的为等比数列;
(2)由(1)知,an+
=
?3n-1,
∴an=
×3n-
,
∴Sn=a1+a2+…+an
=
?
-
=
?3n-
(2n+3),
∴Tn=S1+S2+…+Sn
=
(3+32+…+3n)-
×
=
?
-
=
(3n-1)-
.
(3)∵Cn=
(an+
)=
×
×3n=3n-1,
∴Pn=1×30+2×3+3×32+…+n?3n-1,
∴3Pn=1×3+2×32+…+(n-1)?3n-1+n?3n,
两式相减得:
-2
∴a1=1,
当n≥2时,3(an-an-1)=2an+1,即an=3an-1+1,
∴an+
1 |
2 |
1 |
2 |
1 |
2 |
∴数列{an+
1 |
2 |
3 |
2 |
(2)由(1)知,an+
1 |
2 |
3 |
2 |
∴an=
1 |
2 |
1 |
2 |
∴Sn=a1+a2+…+an
=
1 |
2 |
3(1?3n) |
1?3 |
n |
2 |
=
3 |
4 |
1 |
4 |
∴Tn=S1+S2+…+Sn
=
3 |
4 |
1 |
4 |
(5+2n+3)n |
2 |
=
3 |
4 |
3(1?3n) |
1?3 |
n(n+4) |
4 |
=
9 |
8 |
n(n+4) |
4 |
(3)∵Cn=
2 |
3 |
1 |
2 |
2 |
3 |
1 |
2 |
∴Pn=1×30+2×3+3×32+…+n?3n-1,
∴3Pn=1×3+2×32+…+(n-1)?3n-1+n?3n,
两式相减得:
-2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询