如图,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm.在等腰△PQR中,∠QPR=120°,底边QR=6cm.点B,C,Q
如图,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm.在等腰△PQR中,∠QPR=120°,底边QR=6cm.点B,C,Q,R在同一条直线l上,且C...
如图,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm.在等腰△PQR中,∠QPR=120°,底边QR=6cm.点B,C,Q,R在同一条直线l上,且C,Q两点重合.如果等腰△PQR以1cm/s的速度沿直线l按箭头所示方向匀速运动,ts时梯形ABCD与等腰△PQR重合部分的面积记为S 。(1)当t=4时,求S的值; (2)当4≤t≤10时,求S与t的函数关系式,并求出S的最大值.
展开
1个回答
展开全部
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询