如图1所示,已知二次函数y=ax2-6ax+c与x轴分别交于点A(2,0)、B(4,0),与y轴交于点C(0,-8t)(t>
如图1所示,已知二次函数y=ax2-6ax+c与x轴分别交于点A(2,0)、B(4,0),与y轴交于点C(0,-8t)(t>0).(1)求a、c的值及抛物线顶点D的坐标(...
如图1所示,已知二次函数y=ax2-6ax+c与x轴分别交于点A(2,0)、B(4,0),与y轴交于点C(0,-8t)(t>0).(1)求a、c的值及抛物线顶点D的坐标(用含t的代数式表示);(2)如图1,连接AC,将△OAC沿直线AC翻折,若点O的对应点O′恰好落在该抛物线的对称轴上,求实数t的值;(3)如图2,在正方形EFGH中,点E、F的坐标分别是(4,-4)、(4,-3),边HG位于边EF的右侧.若点P是边EF或边FG上的任意一点(不与E、F、G重合),请你说明以PA、PB、PC、PD的长度为边长不能构成平行四边形;(4)将(3)中的正方形EFGH水平移动,若点P是正方形边FG或EH上任意一点,在水平移动过程中,是否存在点P,使以PA、PB、PC、PD的长度为边长构成平行四边形,其中PA、PB为对边.若存在,请直接写出t的值;若不存在,请说明理由.
展开
1个回答
展开全部
(1)把点A、C的坐标(2,0)、(0,-8t)代入抛物线y=ax2-6ax+c得,
,解得
,
该抛物线为y=-tx2+6tx-8t=-t(x-3)2+t.
∴顶点D坐标为(3,t)
(2)如图1,设抛物线对称轴与x轴交点为M,则AM=1.
由题意得:O′A=OA=2.
∴O′A=2AM,∴∠O′AM=60°.
∴∠O′AC=∠OAC=60°
∴在Rt△OAC中:
∴OC=
?AO=2
,
即?8t=?2
.
∴t=
|
|
该抛物线为y=-tx2+6tx-8t=-t(x-3)2+t.
∴顶点D坐标为(3,t)
(2)如图1,设抛物线对称轴与x轴交点为M,则AM=1.
由题意得:O′A=OA=2.
∴O′A=2AM,∴∠O′AM=60°.
∴∠O′AC=∠OAC=60°
∴在Rt△OAC中:
∴OC=
3 |
3 |
即?8t=?2
3 |
∴t=
|