已知关于x的方程mx2-(3m+2)x+2m+2=0(1)求证:无论m取任何实数时,方程恒有实数根;(2)若关于x的方
已知关于x的方程mx2-(3m+2)x+2m+2=0(1)求证:无论m取任何实数时,方程恒有实数根;(2)若关于x的方程mx2-(3m+2)x+2m+2=0的两个不等实数...
已知关于x的方程mx2-(3m+2)x+2m+2=0(1)求证:无论m取任何实数时,方程恒有实数根;(2)若关于x的方程mx2-(3m+2)x+2m+2=0的两个不等实数根均为正整数,且m为整数,求m的值.
展开
1个回答
展开全部
(1)①当m=0时,方程为-2x+2=0,x=1,此一元一次方程有实根,
②当m≠0时,方程为一元二次方程mx2-(3m+2)x+2m+2=0,
∵a=m,b=-(3m+2),c=2m+2,
∴△=b2-4ac=[-(3m+2)]2-4m×(2m+2)=m2+4m+4=(m+2)2,
∵(m+2)2≥0,
∴无论m取任何实数时,方程恒有实数根;
(2)根据(1)可得:
x1=
=
=2+
,
x2=
=1,
∵x为整数,m为整数,
∴m=1,-1,2,-2,
∴x1=4,0,3,1,
∵x1≠x2,且x为正整数,
∴m=1或m=2.
②当m≠0时,方程为一元二次方程mx2-(3m+2)x+2m+2=0,
∵a=m,b=-(3m+2),c=2m+2,
∴△=b2-4ac=[-(3m+2)]2-4m×(2m+2)=m2+4m+4=(m+2)2,
∵(m+2)2≥0,
∴无论m取任何实数时,方程恒有实数根;
(2)根据(1)可得:
x1=
3m+2+(m+2) |
2m |
2m+2 |
m |
2 |
m |
x2=
3m+2?(m+2) |
2m |
∵x为整数,m为整数,
∴m=1,-1,2,-2,
∴x1=4,0,3,1,
∵x1≠x2,且x为正整数,
∴m=1或m=2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询