如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN(1)如图2,在梯形ABCD中,B

如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN(1)如图2,在梯形ABCD中,BC∥AD,AB=BC=CD,点M、N分别... 如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN(1)如图2,在梯形ABCD中,BC∥AD,AB=BC=CD,点M、N分别在AD、CD上,若∠MBN=12∠ABC,试探究线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.(2)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=12∠ABC,试探究线段MN、AM、CN又有怎样的数量关系?请直接写出猜想,不需证明. 展开
 我来答
松柏之寿
2014-12-28 · TA获得超过236个赞
知道答主
回答量:120
采纳率:66%
帮助的人:56.8万
展开全部
(1)MN=AM+CN.
理由如下:
如图,∵BC∥AD,AB=BC=CD,
∴梯形ABCD是等腰梯形,
∴∠A+∠BCD=180°,
把△ABM绕点B顺时针旋转使AB边与BC边重合,则△ABM≌△CBM′,
∴AM=CM′,BM=BM′,∠A=∠BCM′,∠ABM=∠M′BC,
∴∠BCM′+∠BCD=180°,
∴点M′、C、N三点共线,
∵∠MBN=
1
2
∠ABC,
∴∠M′BN=∠M′BC+∠CBN=∠ABM+∠CBN=∠ABC-∠MBN=
1
2
∠ABC,
∴∠MBN=∠M′BN,
在△BMN和△BM′N中,
BM=BM′
∠MBN=∠M′BN
BN=BN

∴△BMN≌△BM′N(SAS),
∴MN=M′N,
又∵M′N=CM′+CN=AM+CN,
∴MN=AM+CN;


(2)MN=CN-AM.
理由如下:如图,作∠CBM′=∠ABM交CN于点M′,
∵∠ABC+∠ADC=180°,
∴∠BAD+∠C=360°-180°=180°,
又∵∠BAD+∠BAM=180°,
∴∠C=∠BAM,
在△ABM和△CBM′中,
∠CBM′=∠ABM
AB=BC
∠C=∠BAM

∴△ABM≌△CBM′(ASA),
∴AM=CM′,BM=BM′,
∵∠MBN=
1
2
∠ABC,
∴∠M′BN=∠ABC-(∠ABN+∠CBM′)=∠ABC-(∠ABN+∠ABM)=∠ABC-∠MBN=
1
2
∠ABC,
∴∠MBN=∠M′BN,
在△MBN和△M′BN中,
BM=BM′
∠MBN=∠M′BN
BN=BN

∴△MBN≌△M′BN(SAS),
∴MN=M′N,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ufo110309
2015-03-12
知道答主
回答量:42
采纳率:0%
帮助的人:5.2万
展开全部

(1)MN=AM+CN.
理由如下:
如图,∵BC∥AD,AB=BC=CD,
∴梯形ABCD是等腰梯形,
∴∠A+∠BCD=180°,
把△ABM绕点B顺时针旋转使AB边与BC边重合,则△ABM≌△CBM′,
∴AM=CM′,BM=BM′,∠A=∠BCM′,∠ABM=∠M′BC,
∴∠BCM′+∠BCD=180°,
∴点M′、C、N三点共线,
∵∠MBN=
1
2
∠ABC,
∴∠M′BN=∠M′BC+∠CBN=∠ABM+∠CBN=∠ABC-∠MBN=
1
2
∠ABC,
∴∠MBN=∠M′BN,
在△BMN和△BM′N中,

BM=BM′
∠MBN=∠M′BN
BN=BN

∴△BMN≌△BM′N(SAS),
∴MN=M′N,
又∵M′N=CM′+CN=AM+CN,
∴MN=AM+CN;
向左转|向右转

(2)MN=CN-AM.
理由如下:如图,作∠CBM′=∠ABM交CN于点M′,
∵∠ABC+∠ADC=180°,
∴∠BAD+∠C=360°-180°=180°,
又∵∠BAD+∠BAM=180°,
∴∠C=∠BAM,
在△ABM和△CBM′中,
∠CBM′=∠ABM
AB=BC
∠C=∠BAM

∴△ABM≌△CBM′(ASA),
∴AM=CM′,BM=BM′,
∵∠MBN=
1
2
∠ABC,
∴∠M′BN=∠ABC-(∠ABN+∠CBM′)=∠ABC-(∠ABN+∠ABM)=∠ABC-∠MBN=
1
2
∠ABC,
∴∠MBN=∠M′BN,
在△MBN和△M′BN中,

BM=BM′
∠MBN=∠M′BN
BN=BN

∴△MBN≌△M′BN(SAS),
∴MN=M′N,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式