如图1,已知直线l的解析式为y=43x+4,它与x轴、y轴分别相交于A、B两点.点C从点O出发沿OA以每秒1个单位
如图1,已知直线l的解析式为y=43x+4,它与x轴、y轴分别相交于A、B两点.点C从点O出发沿OA以每秒1个单位的速度向点A匀速运动;点D从点A出发沿AB以每秒1个单位...
如图1,已知直线l的解析式为y=43x+4,它与x轴、y轴分别相交于A、B两点.点C从点O出发沿OA以每秒1个单位的速度向点A匀速运动;点D从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,点C、D同时出发,当点C到达点A时同时停止运动.伴随着C、D的运动,EF始终保持垂直平分CD,垂足为E,且EF交折线AB-BO-AO于点F.(1)直接写出A、B两点的坐标;(2)设点C、D的运动时间是t秒(t>0).①用含t的代数式分别表示线段AD和AC的长度;②在点F运动的过程中,四边形BDEF能否成为直角梯形?若能,求t的值;若不能,请说明理由.(可利用备用图解题)
展开
1个回答
展开全部
解答:解:(1)直线的解析式为y=
x+4,
当x=0时,得出y=4,当y=0时,得出x=-3,
所以A(-3,0),B(0,4);
(2)①因为C,D均是每秒1个单位的速度匀速运动,
所以AD=t,OC=t.
又∵A(-3,0),
∴OA=3,∴AC=3-t,
则AD=t,AC=3-t;
②能.
在Rt△ABE中,OA=3,OB=4,
根据勾股定理得:AB=
=
=5,
(i)如图1,当CD⊥AB时,
∵EF⊥CD,
∴EF∥AB,
∴四边形BDEF是直角梯形,
∵∠ADC=90°,
∴∠ADC=∠A0B=90°,
又∵∠BAO=∠CAD,
∴△ADC∽△AOB,又AD=t,AC=3-t,
∴
=
,即
=
,
解得t=
;
(ii)如图2,当CD∥BO时,EF⊥BO,∴四边形BDEF是直角梯形,
此时∠ACD=90°,
∴∠ACD=∠AOB=90°,又∠DAC=∠BAO,
∴△ACD∽△AOB,又AB=t,AC=3-t,
∴
=
,即
=
,
解得t=
.
综上所得,当t=
或t=
时,四边形BDEF是直角梯形.
4 |
3 |
当x=0时,得出y=4,当y=0时,得出x=-3,
所以A(-3,0),B(0,4);
(2)①因为C,D均是每秒1个单位的速度匀速运动,
所以AD=t,OC=t.
又∵A(-3,0),
∴OA=3,∴AC=3-t,
则AD=t,AC=3-t;
②能.
在Rt△ABE中,OA=3,OB=4,
根据勾股定理得:AB=
OA2+OB2 |
32+42 |
(i)如图1,当CD⊥AB时,
∵EF⊥CD,
∴EF∥AB,
∴四边形BDEF是直角梯形,
∵∠ADC=90°,
∴∠ADC=∠A0B=90°,
又∵∠BAO=∠CAD,
∴△ADC∽△AOB,又AD=t,AC=3-t,
∴
AD |
AO |
AC |
AB |
t |
3 |
3?t |
5 |
解得t=
9 |
8 |
(ii)如图2,当CD∥BO时,EF⊥BO,∴四边形BDEF是直角梯形,
此时∠ACD=90°,
∴∠ACD=∠AOB=90°,又∠DAC=∠BAO,
∴△ACD∽△AOB,又AB=t,AC=3-t,
∴
AD |
AB |
AC |
AO |
t |
5 |
3?t |
3 |
解得t=
15 |
8 |
综上所得,当t=
9 |
8 |
15 |
8 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询