求不定积分∫(2x+1)/(x^2+2x-15)dx
展开全部
原式=∫{(2x+2)-1}/(x^2+2x-15)dx
=∫(2x+2)/(x^2+2x-15)-1/(x^2+2x-15)dx
=ln(x^2+2x-15)-∫1/(x-3)(x+5)dx+c
=ln(x^2+2x-15)-1/8∫1/(x-3)-1/(x+5)dx+c
=ln(x^2+2x-15)-1/8{ln(x-3)-ln(x+5)}+c
=∫(2x+2)/(x^2+2x-15)-1/(x^2+2x-15)dx
=ln(x^2+2x-15)-∫1/(x-3)(x+5)dx+c
=ln(x^2+2x-15)-1/8∫1/(x-3)-1/(x+5)dx+c
=ln(x^2+2x-15)-1/8{ln(x-3)-ln(x+5)}+c
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询