已知:如图,在△ABC中,AB=AC,以AB为直径的半圆O交BC于D,AC于E,连接AD、BE交于点M,过点D作DF⊥AC于F
已知:如图,在△ABC中,AB=AC,以AB为直径的半圆O交BC于D,AC于E,连接AD、BE交于点M,过点D作DF⊥AC于F,DH⊥AB于H,交BE于G,下列结论:①B...
已知:如图,在△ABC中,AB=AC,以AB为直径的半圆O交BC于D,AC于E,连接AD、BE交于点M,过点D作DF⊥AC于F,DH⊥AB于H,交BE于G,下列结论:①BD=CD;②DF是⊙O的切线;③∠DAC=∠BDH;④DG=12BM.成立的个数( )A.1个B.2个C.3个D.4个
展开
1个回答
展开全部
①∵AB为直径,
∴∠BDA=90°,即AD⊥BC,
又∵AB=AC,
∴BD=DC.∠BAD=∠DAE,
故①正确;
②连接OD.
∵∠BAD=∠DAE,
∴
=
,
∴OD⊥BE,
∵AB是直径,
∴BE⊥AC
又∵DF⊥AC,
∴BE∥DF,
∴DF⊥OD,
∴DF是切线.故②正确;
③∵直角△ABD中,DH⊥AB,
∴∠DAB=∠BDH,
又∵∠BAD=∠DAC,
∴∠DAC=∠BDH.
故③正确;
④∵∠DBE=∠DAC(同弧所对的圆周角相等),
∠BDH=∠DAC(已证),
∴∠DBE=∠BDH
∴DG=BG,
∵∠BDH+∠HDA=∠DBE+∠DMB=90°,
∴∠GDM=∠DMG
∴DG=GM
∴DG=GM=BG=
BM.
故④正确.
故选D.
∴∠BDA=90°,即AD⊥BC,
又∵AB=AC,
∴BD=DC.∠BAD=∠DAE,
故①正确;
②连接OD.
∵∠BAD=∠DAE,
∴
BD |
DE |
∴OD⊥BE,
∵AB是直径,
∴BE⊥AC
又∵DF⊥AC,
∴BE∥DF,
∴DF⊥OD,
∴DF是切线.故②正确;
③∵直角△ABD中,DH⊥AB,
∴∠DAB=∠BDH,
又∵∠BAD=∠DAC,
∴∠DAC=∠BDH.
故③正确;
④∵∠DBE=∠DAC(同弧所对的圆周角相等),
∠BDH=∠DAC(已证),
∴∠DBE=∠BDH
∴DG=BG,
∵∠BDH+∠HDA=∠DBE+∠DMB=90°,
∴∠GDM=∠DMG
∴DG=GM
∴DG=GM=BG=
1 |
2 |
故④正确.
故选D.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询