已知函数f(x)=x2+mx-4在区间[-2,1]上的两个端点处取得最大值和最小值.(1)求实数m的所有取值组成的

已知函数f(x)=x2+mx-4在区间[-2,1]上的两个端点处取得最大值和最小值.(1)求实数m的所有取值组成的集合A;(2)试写出f(x)在区间[-2,1]上的最大值... 已知函数f(x)=x2+mx-4在区间[-2,1]上的两个端点处取得最大值和最小值.(1)求实数m的所有取值组成的集合A;(2)试写出f(x)在区间[-2,1]上的最大值g(m);(3)设h(x)=-12x2+12x+7,令F(m)=g(m),m∈Ah(m),m∈B,其中B=?RA,若关于m的方程F(m)=a恰有两个不相等的实数根,求实数a的取值范围. 展开
 我来答
手机用户13930
2014-12-29 · TA获得超过164个赞
知道答主
回答量:192
采纳率:100%
帮助的人:160万
展开全部
解答:解:(1)∵f(x)=x2+mx-4在区间[-2,1]上的两个端点处取得最大值和最小值,
∴函数在区间[-2,1]上是单调函数,
又∵函数f(x)的图象为开口向上的抛物线,对称轴为x=-
m
2

∴必有-
m
2
≥1,或-
m
2
≤-2,解得m≥4或 m≤-2,
∴实数m的所有取值组成的集合A={m|m≥4或 m≤-2};
(2)当 m≥4时,-
m
2
≤-2,函数f(x)在区间[-2,1]上单调递增,
∴函数f(x)的最大值g(m)=f(1)=m-3;
当m≤-2 时,-
m
2
≥1,函数f(x)在区间[-2,1]上单调递减,
∴函数f(x)的最大值g(m)=f(-2)=-2m.
(3)由题意可知F(m)=
m-3,m≥4
-2m,m≤-2
-
1
2
m2+
1
2
m+7,-2<m<4

关于m的方程F(m)=a恰有两个不相等的实数根等价于y=F(m)的图象与y=a的图象有两个不同的交点,
作图可知实数a的取值范围为:a>
57
8
或1<a<4
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式