P是矩形ABCD内的任意一点,连接PA,PB,PC,PD,得到△PAB,△PBC,△PCD,△PDA,设它们的面积分别是S1

P是矩形ABCD内的任意一点,连接PA,PB,PC,PD,得到△PAB,△PBC,△PCD,△PDA,设它们的面积分别是S1,S2,S2,S4,给出如下结论:①S1+S2... P是矩形ABCD内的任意一点,连接PA,PB,PC,PD,得到△PAB,△PBC,△PCD,△PDA,设它们的面积分别是S1,S2,S2,S4,给出如下结论:①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1,则S4=2S2;④若S1=S2,则P点在矩形的对角线上.正确的是(  )A.①②B.①③C.②③D.②④ 展开
 我来答
uiocui509
推荐于2016-02-04 · TA获得超过165个赞
知道答主
回答量:120
采纳率:100%
帮助的人:115万
展开全部
如右图,过点P分别作PF⊥AD于点F,PE⊥AB于点E,
∵△APD以AD为底边,△PBC以BC为底边,
∴此时两三角形的高的和为AB,即可得出S1+S3=
1
2
矩形ABCD面橘段积;
同理可得出S2+S4=
1
2
矩形ABCD面积;
∴②S2+S4=S1+S3正确;
当点P在矩形的两条对角线的交点时,S1+S2=S3+S4.但P是矩形ABCD内的任意一点,所以该等式不一定成立.故①不一定正确;
③若S3=2S1,只能得出△APD与△PBC高度之羡伍腔比,S4不一定等于2S2;故此选项错误;
④若S1=S2
1
2
×PF×AD=
1
2
PE×AB,
∴△APD与兄衫△PBA高度之比为:
PF
PE
=
AB
AD

∵∠DAE=∠PEA=∠PFA=90°,
∴四边形AEPF是矩形,
∴此时矩形AEPF与矩形ABCD相似,
PF
CD
=
PE
BC

∴P点在矩形的对角线上.
故④选项正确,
故选D.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式