关键是第二问,谢谢!
展开全部
(1)证明:连OA、OE,
因为CD是圆O的切线,∴∠BCD=90°
因为ED=EC OB=OC ∴OE∥BD
∴∠COE=∠OBA ∠BAO=∠AOE
因为OB=OA ∴∠OBA=∠OAB ∴∠COE=∠AOE
OA=OC OE=OE
∴△OCE≅△OAE(SAS)
∴∠OAE=∠OCE=90°
∴AP⊥OA
∴AP是圆O的切线。
(2)解:因为OC=CP
OA=OC=OP/2
∴∠P=30° ∠AOP=60°
∠B=∠AOP/2=30°
∴∠D=60°
由△OCE≅△OAE得EA=EC∴ED=EA
∴△AED是等边三角形∴AD=DE=EC
∴∠D=60° CD=BD/2
设AD=X 则有2X=(X+3√(3))/2
得X=√(3)
∴CD=2√(3)
因为CD是圆O的切线,∴∠BCD=90°
因为ED=EC OB=OC ∴OE∥BD
∴∠COE=∠OBA ∠BAO=∠AOE
因为OB=OA ∴∠OBA=∠OAB ∴∠COE=∠AOE
OA=OC OE=OE
∴△OCE≅△OAE(SAS)
∴∠OAE=∠OCE=90°
∴AP⊥OA
∴AP是圆O的切线。
(2)解:因为OC=CP
OA=OC=OP/2
∴∠P=30° ∠AOP=60°
∠B=∠AOP/2=30°
∴∠D=60°
由△OCE≅△OAE得EA=EC∴ED=EA
∴△AED是等边三角形∴AD=DE=EC
∴∠D=60° CD=BD/2
设AD=X 则有2X=(X+3√(3))/2
得X=√(3)
∴CD=2√(3)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询