线性代数 向量组线性无关的证明
展开全部
以三个向量为例,假设三个向量分别为 a,b,c。三个常数K1,K2,K3,若存在不全为0的K1、K2、K3,使得 K1 * a + K2 * b + K3 * c = 0,则我们可以称为向量a,b,c线性相关;否则称为线性无关(注意,这里等号右边的0指的是0向量,是一个矢量,因为常数乘以向量的结果是一个向量,向量相加也是一个向量。)上面等式中,不全为0指的是只要K1,K2,K3三个常数有一个不为0,上式等式成立,三个向量也就是线性相关。只有在K1=K2=K3=0时,前面等式才成立,那么我们就称为向量a,b,c线性无关。其他多个向量线性相关性的原理与此类似。也可用反证法证明。即先假设线性相关,最后推出K1=k2=k3=0,与先前假设矛盾,故可证明结论是线性无关。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
设x1α1+x2α2+...+x(n-1)α(n-1)+yβ=0,则x1α1+x2α2+...+x(n-1)α(n-1)=-yβ。
两边与β求内积,得0=-y(β,β),因为β非零,所以(β,β)>0,所以y=0。
所以x1α1+x2α2+...+x(n-1)α(n-1)=0。
因为α1,α2,...,α(n-1)线性无关,所以x1=x2=...=x(n-1)=0。
所以向量组α1,α2,...,α(n-1),β线性无关。
两边与β求内积,得0=-y(β,β),因为β非零,所以(β,β)>0,所以y=0。
所以x1α1+x2α2+...+x(n-1)α(n-1)=0。
因为α1,α2,...,α(n-1)线性无关,所以x1=x2=...=x(n-1)=0。
所以向量组α1,α2,...,α(n-1),β线性无关。
更多追问追答
追问
线性无关组是正交向量组?
追答
两两正交的向量组肯定线性无关,但是线性无关的向量组未必是正交向量组。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证所有的k1 k1 k3 k4.......都为0 或 每一个向量都无法用其余向量线型表出
有具体问题么 可以证明给你
有具体问题么 可以证明给你
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
百度搜索 向量组线性无关的证明 道客巴巴
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询