cosx+cos2x+cos3x+……cosnx=?如何用复数的 方法解 25
设z=cosx+sinxi原式可以化解为z+z^2+z^3.....+z^n用等比求和得z(1-z^n)/(1-z)把z=cosx+sinxi代入算出实部就是答案,但是我...
设z=cosx+sinx i 原式可以化解为z+z^2+z^3.....+z^n 用等比求和得z(1-z^n)/(1-z) 把z=cosx+sinx i 代入 算出实部就是答案,但是我算了几次都和答案不一样 请问 把z=cosx+sinx i代入后怎么计算,最好 详细过程!谢谢
展开
4个回答
展开全部
原式乘以2sinx,
积化和差就变成了 sin2x-0+sin3x-sinx+sin4x-sin2x+...+
sinnx-si(n-2)x+sin(n+1)x-sin(n-1)x
=sin(n+1)x+sinnx-sinx
再除以2sinx,即为答案,[sin(n+1)x+sinnx-sinx]/2sinx
这种方法比较简单 用复数求解太麻烦了
积化和差就变成了 sin2x-0+sin3x-sinx+sin4x-sin2x+...+
sinnx-si(n-2)x+sin(n+1)x-sin(n-1)x
=sin(n+1)x+sinnx-sinx
再除以2sinx,即为答案,[sin(n+1)x+sinnx-sinx]/2sinx
这种方法比较简单 用复数求解太麻烦了
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
e^(ix)=cosx+isinx
e^(ix)+e^(i2x)+e^(i3x)+……+e*(inx)=(cosx+cos2x+……+cosnx)+i(sinx+sin2x+……+sinnx)
=[e^(inx+ix) -e^(ix)]/[e^(ix)-1];
将最后一个等号右端分成实部和虚部(分母和分子同乘以 (cosx-1)-isinx),与等号左端实部和虚部对应相等即得cosx+cos2x+cos3x+……+cosnx=1/2|{sin(n+1/2)x-sin(2/x)}/sin(2/x)|
e^(ix)+e^(i2x)+e^(i3x)+……+e*(inx)=(cosx+cos2x+……+cosnx)+i(sinx+sin2x+……+sinnx)
=[e^(inx+ix) -e^(ix)]/[e^(ix)-1];
将最后一个等号右端分成实部和虚部(分母和分子同乘以 (cosx-1)-isinx),与等号左端实部和虚部对应相等即得cosx+cos2x+cos3x+……+cosnx=1/2|{sin(n+1/2)x-sin(2/x)}/sin(2/x)|
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
引用bd水人的回答:
因为左边的和是实数,所以右边一定可以化为实数。在最后的化简,只需要提取exp(ix/2)和exp(inx/2)之类的就可以了。(个人喜好不同,会导致最后提取的是exp(-ix/2)和exp(-inx/2))
因为左边的和是实数,所以右边一定可以化为实数。在最后的化简,只需要提取exp(ix/2)和exp(inx/2)之类的就可以了。(个人喜好不同,会导致最后提取的是exp(-ix/2)和exp(-inx/2))
展开全部
不是等差数列,是等比数列,其他都没啥问题,,,挺好的回答
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询