问大家一道数学题。谢谢。写过程
f(x)=e^2x-alnx。讨论它的导函数零点的个数。证明当a>0时,f(x)大于等于2a+aln(2/a)。...
f(x)=e^2x-alnx。讨论它的导函数零点的个数。证明当a>0时,f(x)大于等于2a+aln(2/a)。
展开
展开全部
f'(x)=2e^2x-a/x
令g(x)=2xe^2x=a
g'(x)=2e^2x(1+2x)=0得x=-1/2
又因为x>0
g(x)在0<x上单增g(x)>g(0)=0
当a<=0时无零点,
当a>0时有一个零点
由上一问知a>0时f'(x)=0必有一个解设解为x。
2x。e^2x。=a
f(x)>=e^2x。-alnx。
=a/2x。-alna/2e^2x。
=a/2x。+aln2e^2x。/a
=a/2x。+2ax。+aln(2/a)
用基本不等式
>=2a+aln(2/a)
令g(x)=2xe^2x=a
g'(x)=2e^2x(1+2x)=0得x=-1/2
又因为x>0
g(x)在0<x上单增g(x)>g(0)=0
当a<=0时无零点,
当a>0时有一个零点
由上一问知a>0时f'(x)=0必有一个解设解为x。
2x。e^2x。=a
f(x)>=e^2x。-alnx。
=a/2x。-alna/2e^2x。
=a/2x。+aln2e^2x。/a
=a/2x。+2ax。+aln(2/a)
用基本不等式
>=2a+aln(2/a)
更多追问追答
追问
第一问中的x=1/2有什么用?而且为什么a>0就只有一个零点?
追答
不是1/2,是-1/2
这只是求g'(x)的零点,在-1/2左侧为减函数,右侧为增函数
而lnx中x>0的所以函数定义域是x>0
也就是只有右侧有图像,且是单调递增的
g(x)在0g(0)=0
a只是一个常数,与单调函数g(x)最多有一个交点,即有一个零点
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询