奇函数和偶函数的定积分有什么性质

 我来答
他的心里你来猜
推荐于2019-10-06 · TA获得超过1.1万个赞
知道答主
回答量:25
采纳率:100%
帮助的人:4367
展开全部

奇函数在对称区间上的定积分为零偶函数在对称区间上的定积分为其一半区间的两倍。此性质简称为偶倍奇零。

奇函数性质:

1、图象关于原点对称

2、满足f(-x) = - f(x)

3、关于原点对称的区间上单调性一致

4、如果奇函数在x=0上有定义,那么有f(0)=0

5、定义域关于原点对称(奇偶函数共有的)

偶函数性质:

1、图象关于y轴对称

2、满足f(-x) = f(x)

3、关于原点对称的区间上单调性相反

4、如果一个函数既是奇函数有是偶函数,那么有f(x)=0

5、定义域关于原点对称(奇偶函数共有的)

扩展资料:

奇函数定义:对于一个函数在定义域范围内关于原点(0,0)对称、对任意的x都满足 

1、f(-x)=-f(x)的函数叫做奇函数。例如:y=x³(y等于x的3次方)

2、奇函数图象关于原点(0,0)对称。

3、奇函数的定义域必须关于原点(0,0)对称,否则不能成为奇函数。

偶函数定义:

1、如果知道函数表达式,对于函数f(x)的定义域内任意一个x,都满足f(x)=f(-x) 如y=x²,y=cos x 

2、如果知道图像,偶函数图像关于y轴(x=0)对称.

3、偶函数的定义域必须关于原点对称,否则不能成为偶函数 (奇函数也一样)

参考资料:

百度百科-奇函数

百度百科-偶函数

图为信息科技(深圳)有限公司
2021-01-25 广告
g(x)=∫f(t)dt |t=a,x g(-x) = ∫f(t)dt |t=a,-x = ∫f(t)dt |t=a,-a +∫f(t)dt |t=-a,-x = 0 +∫f(t)dt |t=-a,-x (根据奇函数在对称区间上定积分为0)... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
maths_hjxk
推荐于2017-10-06 · 知道合伙人教育行家
maths_hjxk
知道合伙人教育行家
采纳数:9802 获赞数:19413
毕业厦门大学概率论与数理统计专业 硕士学位

向TA提问 私信TA
展开全部
奇函数在对称区间上的定积分为零

偶函数在对称区间上的定积分为其一半区间的两倍。
上述性质简称为偶倍奇零。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
人眸少医发1420
高粉答主

2021-01-13 · 醉心答题,欢迎关注
知道答主
回答量:2
采纳率:0%
帮助的人:2687
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式