常用的全面的幂级数展开公式

 我来答
鲨鱼星小游戏
高粉答主

2021-06-23 · 最爱分享有趣的游戏日常!
鲨鱼星小游戏
采纳数:2708 获赞数:238405

向TA提问 私信TA
展开全部

常用行斗的全面的幂级数展开公式:f(x)=1/(2+x-x的平方)

因式分解

={1/(x+1)+1/[2(1-x/2)]}/3

展开成x的幂级数

=(n=0到∞)∑[(-x)^n+

(x/2)^n/2]

收敛域-1<吵带姿x<1

绝对收敛级数:

一个绝对收敛级数的正数项与负数项所组成的级数都是收敛的。一个条件收敛级数的正数项与负数项所组成的级数都是发散的。

对于任意给定的正数tol,可以找到升绝合适的区间(譬如坐标绝对值充分小),使得这个区间内任意三个点组成的三角形面积都小于tol。

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
Chock9898
高粉答主

2019-10-06 · 关注我不会让你失望
知道答主
回答量:85
采纳率:100%
帮助的人:1.6万
展开全部

展开毕基公式如图:

扩展资料:

幂函数的性质:

一、当α为整数时,α的正负性和奇偶性决定了函数的单调性:

1、当α为正奇数时,图像在定义域为R内单调递增。

2、当α为正偶数时,图像在定义域为第二象限内单调递减,在第一象限内单调递增。

3、当α为负奇数时,图像在第一三象限各象限内单调递减(但不能说在定义域R内单调递减)。

4、当α为负偶数时,图像在第二象限上单调递增,在第一象限内单调递减。

二、当α为分数时,α的正负性和分母的奇偶性决定了函数的单调性:

1、当α>0,分母为偶数时,函数在第一象限内单调递增。

2、当α>0,分母为奇数时,若分子为偶数,函数在第一象限内单调递增,在第二象限单调递减;若分子为奇数,函数在第一、三象限各象限内单调递增。

3、当α<0,分母为偶数时,函数在第一象限内单调递减。

4、当α<0,分母为奇数时,键数渣函数在第一、三象限各象限内单调递减(但不能说在定义域R内单调递减)。

三、当α>1时,幂函数图形下凹(竖抛);当0<α<1时,幂函数图形上凸(横抛稿悄)。

参考资料来源:百度百科-幂函数

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2018-03-28 · TA获得超过2.3万个赞
知道小有建树答主
回答量:147
采纳率:0%
帮助的人:5.5万
展开全部

1/(1-x)=∑x^n  (-1

1、这是公比为q=x的等比级数求和公式的反过来应用,可以直接使用,没有必要写出具体过程, 如果一定要写,就写在下面,略有点麻烦,其中第派逗步要用到收敛的等比级数的余项级数,仍然是等比级数和,这是中学知识

2、f(x)=1/(1-x),f'(x)=1/(1-x)^2,f''(x)=2!/(1-x)^3,f'''(x)=3!/(1-x)^4,……, [f(x)](n阶宽扮导)=n!/(1-x)^(n+1), ②f(0)=1,f'(0)=1,f''(0)=2!,f‘'慎羡灶'(0)=3。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
邢鲸Rd
推荐于2018-02-13 · TA获得超过1.3万个赞
知道小有建树答主
回答量:508
采纳率:100%
帮助的人:655万
展开全部

更多追问追答
追答
够全了吗?我手打的
追问
怎么看不清,肿么回事?
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
新华电脑学校
2021-10-30 · 专注互联网教育 云南省部级重点院校
新华电脑学校
云南新华电脑学校是经云南省教育厅批准成立的省(部)级重点计算机专业学校,采用三元化管理模式,教学设备先进,师资雄厚学生毕业即就业,学院引进了电商企业入驻,创建心为电商创业园区,实现在校即创业
向TA提问
展开全部
常用的全面的幂级数展开公式:f(x)=1/(2+x-x的平方)
因式分解
={1/(x+1)+1/[2(1-x/2)]}/3
展开成x的幂级数
=(n=0到∞)∑[(-x)^n+
(x/2)^n/2]
收敛域-1<x<1
绝对收敛绝猛码级数:
一个绝对收敛级数的正数项与负数项所组成的级数都是收敛的。一个条件收敛级数的知粗正数项与负数项所组成的级数都是发散的。
对于任并哪意给定的正数tol,可以找到合适的区间(譬如坐标绝对值充分小),使得这个区间内任意三个点组成的三角形面积都小于tol。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(6)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式