lingo中如何编程可以实现Xij<=Xjj(i=1..5,j=1..5)?啊?求大神指点
假设你的n=5,m=5;d是一个矩阵,等于[1,2,3,4,5;1,2,3,4,5;1,2,3,4,5;1,2,3,4,5;1,2,3,4,5],c是一个矩阵,等于[1,2,3,4,5;1,2,3,4,5;1,2,3,4,5;1,2,3,4,5;1,2,3,4,5]; p =5;
编写得到的LINGO程序见附件,分析结果如下:
Global optimal solution found.
Objective value: 55.00000
Objective bound: 55.00000
Infeasibilities: 0.000000
Extended solver steps: 0
Total solver iterations: 0
Model Class: PILP
Total variables: 25
Nonlinear variables: 0
Integer variables: 25
Total constraints: 32
Nonlinear constraints: 0
Total nonzeros: 95
Nonlinear nonzeros: 0
Variable Value Reduced Cost
D( 1, 1) 1.000000 0.000000
D( 1, 2) 2.000000 0.000000
D( 1, 3) 3.000000 0.000000
D( 1, 4) 4.000000 0.000000
D( 1, 5) 5.000000 0.000000
D( 2, 1) 1.000000 0.000000
D( 2, 2) 2.000000 0.000000
D( 2, 3) 3.000000 0.000000
D( 2, 4) 4.000000 0.000000
D( 2, 5) 5.000000 0.000000
D( 3, 1) 1.000000 0.000000
D( 3, 2) 2.000000 0.000000
D( 3, 3) 3.000000 0.000000
D( 3, 4) 4.000000 0.000000
D( 3, 5) 5.000000 0.000000
D( 4, 1) 1.000000 0.000000
D( 4, 2) 2.000000 0.000000
D( 4, 3) 3.000000 0.000000
D( 4, 4) 4.000000 0.000000
D( 4, 5) 5.000000 0.000000
D( 5, 1) 1.000000 0.000000
D( 5, 2) 2.000000 0.000000
D( 5, 3) 3.000000 0.000000
D( 5, 4) 4.000000 0.000000
D( 5, 5) 5.000000 0.000000
C( 1, 1) 1.000000 0.000000
C( 1, 2) 2.000000 0.000000
C( 1, 3) 3.000000 0.000000
C( 1, 4) 4.000000 0.000000
C( 1, 5) 5.000000 0.000000
C( 2, 1) 1.000000 0.000000
C( 2, 2) 2.000000 0.000000
C( 2, 3) 3.000000 0.000000
C( 2, 4) 4.000000 0.000000
C( 2, 5) 5.000000 0.000000
C( 3, 1) 1.000000 0.000000
C( 3, 2) 2.000000 0.000000
C( 3, 3) 3.000000 0.000000
C( 3, 4) 4.000000 0.000000
C( 3, 5) 5.000000 0.000000
C( 4, 1) 1.000000 0.000000
C( 4, 2) 2.000000 0.000000
C( 4, 3) 3.000000 0.000000
C( 4, 4) 4.000000 0.000000
C( 4, 5) 5.000000 0.000000
C( 5, 1) 1.000000 0.000000
C( 5, 2) 2.000000 0.000000
C( 5, 3) 3.000000 0.000000
C( 5, 4) 4.000000 0.000000
C( 5, 5) 5.000000 0.000000
X( 1, 1) 1.000000 1.000000
X( 1, 2) 0.000000 4.000000
X( 1, 3) 0.000000 9.000000
X( 1, 4) 0.000000 16.00000
X( 1, 5) 0.000000 25.00000
X( 2, 1) 0.000000 1.000000
X( 2, 2) 1.000000 4.000000
X( 2, 3) 0.000000 9.000000
X( 2, 4) 0.000000 16.00000
X( 2, 5) 0.000000 25.00000
X( 3, 1) 0.000000 1.000000
X( 3, 2) 0.000000 4.000000
X( 3, 3) 1.000000 9.000000
X( 3, 4) 0.000000 16.00000
X( 3, 5) 0.000000 25.00000
X( 4, 1) 0.000000 1.000000
X( 4, 2) 0.000000 4.000000
X( 4, 3) 0.000000 9.000000
X( 4, 4) 1.000000 16.00000
X( 4, 5) 0.000000 25.00000
X( 5, 1) 0.000000 1.000000
X( 5, 2) 0.000000 4.000000
X( 5, 3) 0.000000 9.000000
X( 5, 4) 0.000000 16.00000
X( 5, 5) 1.000000 25.00000
Row Slack or Surplus Dual Price
1 55.00000 -1.000000
2 0.000000 0.000000
3 0.000000 0.000000
4 0.000000 0.000000
5 0.000000 0.000000
6 0.000000 0.000000
7 0.000000 0.000000
8 0.000000 0.000000
9 1.000000 0.000000
10 1.000000 0.000000
11 1.000000 0.000000
12 1.000000 0.000000
13 1.000000 0.000000
14 0.000000 0.000000
15 1.000000 0.000000
16 1.000000 0.000000
17 1.000000 0.000000
18 1.000000 0.000000
19 1.000000 0.000000
20 0.000000 0.000000
21 1.000000 0.000000
22 1.000000 0.000000
23 1.000000 0.000000
24 1.000000 0.000000
25 1.000000 0.000000
26 0.000000 0.000000
27 1.000000 0.000000
28 1.000000 0.000000
29 1.000000 0.000000
30 1.000000 0.000000
31 1.000000 0.000000
32 0.000000 0.000000