若两个等差数列{an}.{bn}的前n项和分别为sn与Tn,且sn/Tn=3n+2/2n+1,则a12/b15的值为 100
2个回答
展开全部
设{an}公差为d1,{bn}公差为d2
Sn/Tn=[na1+n(n-1)d1/2]/[nb1+n(n-1)d2/2]
=[(2a1-d1)+nd1]/[(2b1-d2)+nd2]
=(3n+2)/(2n+1)
令d2=t,则d1=2t,2a1-d1=3t,2b1-d2=2t
解得:a1=(5/2)t,b1=(3/2)t
a12/b15
=(a1+11d1)/(b1+14d2)
=[(5/2)t+11×(2t)]/[(3/2)t+14×t]
=(5/2 +22)/(3/2 +14)
=49/31
Sn/Tn=[na1+n(n-1)d1/2]/[nb1+n(n-1)d2/2]
=[(2a1-d1)+nd1]/[(2b1-d2)+nd2]
=(3n+2)/(2n+1)
令d2=t,则d1=2t,2a1-d1=3t,2b1-d2=2t
解得:a1=(5/2)t,b1=(3/2)t
a12/b15
=(a1+11d1)/(b1+14d2)
=[(5/2)t+11×(2t)]/[(3/2)t+14×t]
=(5/2 +22)/(3/2 +14)
=49/31
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询