求助Matlab关于解一个二阶偏微分方程
2个回答
展开全部
求解一阶ODE的代码是很直接的。然而,二阶或者三阶的ODE不能够直接应用求解。你必须先将高阶的ODE改写成一阶的ODEs系统,使得它可以采用MATLAB ODE求解器。
这是一个如何将二阶微分方程改写成两个一阶微分方程以便利用MATLAB的诸如ODE45等求解器求解的例子。下面的方程组包含了一个一阶与一个二阶微分方程:
x'= - y*exp(-t/5)+y' * exp(-t/5)+1; (1)
y''= -2*sin(t); (2)
第一步是引入一个新的变量,使得它等于具有二阶导数的自由变量的一阶导数:
z=y' (3)
对上式两边求导如下:
z' = y'' ; (4)
将(4)式带入(2)式得到如下方程:
z'= -2*sin(t) (5)
联立(1),(3)与(5)得到三个一阶微分方程:
x'= - y*exp(-t/5)+y' * exp(-t/5)+1; (1)
z=y'; (3)
z'= -2*sin(t) (5)
既然 z=y' ,用z代替等式(1)中的y' 。而且,因为MATLAB要求所有的导数项在左边,改写等式(3)。得到如下的方程组:
x'= - y*exp(-t/5)+z* exp(-t/5)+1; (1a)
y'=z ; (6a)
z'= -2*sin(t); (5a)
为了利用ODE45或者是MATLAB的其他的ODE求解器求解上面的方程组,需要建立一个包含这些微分方程的函数。这个函数需要两个输入:状态量与时间,返回状态的微分,建立命名为odetest.m的函数如下:
function xprime=odetest(t, x)
% 既然状态量以单个向量的形式输入,我们令:
% x(1)=x;
% x(2)=y;
% x(3)=z;
xprime(1)=-x(2)* exp(-t/5)+x(3)*exp(-t/5)+1;
% x'= - y*exp(-t/5)+z* exp(-t/5)+1;
xprime(2)=-x(3);
% y'=z
xprime(3)=-2×sin(t);
% z'= -2*sin(t)
xprime=xprime(:);
% 这是为了确保返回的是个列向量
采用ODE23或者另外的MATLAB ODE求解器求解方程系统,定义起始和停止时间以及初识的状态向量。例如:
t0 = 5 ; % 起始时间
tf = 20 ; % 停止时间
x0 = [1 –1 3] ; % 初识条件
[t , s] = ode23 ( @odetest, [t0 ,tf ], x0) ;
x = s (: , 1 );
y = s (: , 2 );
z = s (: , 3 );
这是一个如何将二阶微分方程改写成两个一阶微分方程以便利用MATLAB的诸如ODE45等求解器求解的例子。下面的方程组包含了一个一阶与一个二阶微分方程:
x'= - y*exp(-t/5)+y' * exp(-t/5)+1; (1)
y''= -2*sin(t); (2)
第一步是引入一个新的变量,使得它等于具有二阶导数的自由变量的一阶导数:
z=y' (3)
对上式两边求导如下:
z' = y'' ; (4)
将(4)式带入(2)式得到如下方程:
z'= -2*sin(t) (5)
联立(1),(3)与(5)得到三个一阶微分方程:
x'= - y*exp(-t/5)+y' * exp(-t/5)+1; (1)
z=y'; (3)
z'= -2*sin(t) (5)
既然 z=y' ,用z代替等式(1)中的y' 。而且,因为MATLAB要求所有的导数项在左边,改写等式(3)。得到如下的方程组:
x'= - y*exp(-t/5)+z* exp(-t/5)+1; (1a)
y'=z ; (6a)
z'= -2*sin(t); (5a)
为了利用ODE45或者是MATLAB的其他的ODE求解器求解上面的方程组,需要建立一个包含这些微分方程的函数。这个函数需要两个输入:状态量与时间,返回状态的微分,建立命名为odetest.m的函数如下:
function xprime=odetest(t, x)
% 既然状态量以单个向量的形式输入,我们令:
% x(1)=x;
% x(2)=y;
% x(3)=z;
xprime(1)=-x(2)* exp(-t/5)+x(3)*exp(-t/5)+1;
% x'= - y*exp(-t/5)+z* exp(-t/5)+1;
xprime(2)=-x(3);
% y'=z
xprime(3)=-2×sin(t);
% z'= -2*sin(t)
xprime=xprime(:);
% 这是为了确保返回的是个列向量
采用ODE23或者另外的MATLAB ODE求解器求解方程系统,定义起始和停止时间以及初识的状态向量。例如:
t0 = 5 ; % 起始时间
tf = 20 ; % 停止时间
x0 = [1 –1 3] ; % 初识条件
[t , s] = ode23 ( @odetest, [t0 ,tf ], x0) ;
x = s (: , 1 );
y = s (: , 2 );
z = s (: , 3 );
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
引用信玄居士的回答:
求解一阶ODE的代码是很直接的。然而,二阶或者三阶的ODE不能够直接应用求解。你必须先将高阶的ODE改写成一阶的ODEs系统,使得它可以采用MATLAB ODE求解器。
这是一个如何将二阶微分方程改写成两个一阶微分方程以便利用MATLAB的诸如ODE45等求解器求解的例子。下面的方程组包含了一个一阶与一个二阶微分方程:
x'= - y*exp(-t/5)+y' * exp(-t/5)+1; (1)
y''= -2*sin(t); (2)
第一步是引入一个新的变量,使得它等于具有二阶导数的自由变量的一阶导数:
z=y' (3)
对上式两边求导如下:
z' = y'' ; (4)
将(4)式带入(2)式得到如下方程:
z'= -2*sin(t) (5)
联立(1),(3)与(5)得到三个一阶微分方程:
x'= - y*exp(-t/5)+y' * exp(-t/5)+1; (1)
z=y'; (3)
z'= -2*sin(t) (5)
既然 z=y' ,用z代替等式(1)中的y' 。而且,因为MATLAB要求所有的导数项在左边,改写等式(3)。得到如下的方程组:
x'= - y*exp(-t/5)+z* exp(-t/5)+1; (1a)
y'=z ; (6a)
z'= -2*sin(t); (5a)
为了利用ODE45或者是MATLAB的其他的ODE求解器求解上面的方程组,需要建立一个包含这些微分方程的函数。这个函数需要两个输入:状态量与时间,返回状态的微分,建立命名为odetest.m的函数如下:
function xprime=odetest(t, x)
% 既然状态量以单个向量的形式输入,我们令:
% x(1)=x;
% x(2)=y;
% x(3)=z;
xprime(1)=-x(2)* exp(-t/5)+x(3)*exp(-t/5)+1;
% x'= - y*exp(-t/5)+z* exp(-t/5)+1;
xprime(2)=-x(3);
% y'=z
xprime(3)=-2×sin(t);
% z'= -2*sin(t)
xprime=xprime(:);
% 这是为了确保返回的是个列向量
采用ODE23或者另外的MATLAB ODE求解器求解方程系统,定义起始和停止时间以及初识的状态向量。例如:
t0 = 5 ; % 起始时间
tf = 20 ; % 停止时间
x0 = [1 –1 3] ; % 初识条件
[t , s] = ode23 ( @odetest, [t0 ,tf ], x0) ;
x = s (: , 1 );
y = s (: , 2 );
z = s (: , 3 );
求解一阶ODE的代码是很直接的。然而,二阶或者三阶的ODE不能够直接应用求解。你必须先将高阶的ODE改写成一阶的ODEs系统,使得它可以采用MATLAB ODE求解器。
这是一个如何将二阶微分方程改写成两个一阶微分方程以便利用MATLAB的诸如ODE45等求解器求解的例子。下面的方程组包含了一个一阶与一个二阶微分方程:
x'= - y*exp(-t/5)+y' * exp(-t/5)+1; (1)
y''= -2*sin(t); (2)
第一步是引入一个新的变量,使得它等于具有二阶导数的自由变量的一阶导数:
z=y' (3)
对上式两边求导如下:
z' = y'' ; (4)
将(4)式带入(2)式得到如下方程:
z'= -2*sin(t) (5)
联立(1),(3)与(5)得到三个一阶微分方程:
x'= - y*exp(-t/5)+y' * exp(-t/5)+1; (1)
z=y'; (3)
z'= -2*sin(t) (5)
既然 z=y' ,用z代替等式(1)中的y' 。而且,因为MATLAB要求所有的导数项在左边,改写等式(3)。得到如下的方程组:
x'= - y*exp(-t/5)+z* exp(-t/5)+1; (1a)
y'=z ; (6a)
z'= -2*sin(t); (5a)
为了利用ODE45或者是MATLAB的其他的ODE求解器求解上面的方程组,需要建立一个包含这些微分方程的函数。这个函数需要两个输入:状态量与时间,返回状态的微分,建立命名为odetest.m的函数如下:
function xprime=odetest(t, x)
% 既然状态量以单个向量的形式输入,我们令:
% x(1)=x;
% x(2)=y;
% x(3)=z;
xprime(1)=-x(2)* exp(-t/5)+x(3)*exp(-t/5)+1;
% x'= - y*exp(-t/5)+z* exp(-t/5)+1;
xprime(2)=-x(3);
% y'=z
xprime(3)=-2×sin(t);
% z'= -2*sin(t)
xprime=xprime(:);
% 这是为了确保返回的是个列向量
采用ODE23或者另外的MATLAB ODE求解器求解方程系统,定义起始和停止时间以及初识的状态向量。例如:
t0 = 5 ; % 起始时间
tf = 20 ; % 停止时间
x0 = [1 –1 3] ; % 初识条件
[t , s] = ode23 ( @odetest, [t0 ,tf ], x0) ;
x = s (: , 1 );
y = s (: , 2 );
z = s (: , 3 );
展开全部
ODE是求解常微分方程的,非偏微分
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询