把一个三角形分成四个相等的三角形;有几种分法?该怎样分

 我来答
沸融熔
推荐于2019-08-20 · TA获得超过1.1万个赞
知道答主
回答量:115
采纳率:16%
帮助的人:12.7万
展开全部

这是一道开放性习题,四等分三角形的方法不止一种很难穷尽,下面图片展示的只是一些常见的分法,全部的分法参见文字内容:

一、四等分法方法:

方法1 :在已知△ABC的任意一边(假设BC边)上取三个四等分点D,E,F,顺次连接AD,AE,AF,这样就将△ABC分成了面积相等的四个小三角形。

理由:等底等高的三角形的面积相等。

方法2:在已知△ABC的任意一边(假设BC边)上取三个四等分点D,E,F,用实线连接AD,AE(或AD,AF或AE,AF),用虚线连接AF(或AE或AD),然后在AF(或AE或AD)上取中点G,用实线连GE,GC(或GD,GF或GB,GE),这样△ABC中的实线将其分成了四个面积相等的图形。

理由:①等底等高的三角形的面积相等;②等量加等量和相等。

二、作中线法

方法1:先在已知△ABC的任意一边(假设为BC边)上作中线AD,再在△ABD和△ADC的任意一边分别作中线,这样就将△ABC分成了面积相等的四个小三角形。

理由:等底等高的三角形的面积相等。

方法2:先在已知△ABC的任意一边(假设为BC边)上作中线AD(实线),再在△ABD和△ADC其中一个三角形的任意一边作中线(实线),另一个三角形的任意一边作中线(虚线),在虚线上再取中点,用实线分别连接这个中点与另两个顶点,这样△ABC中的实线将其分成了面积相等的四个图形。

理由:①等底等高的三角形的面积相等;②等量加等量和相等。

方法3:先在已知△ABC的任意一边(假设为BC边)上作中线(实线)AD,再在△ABD和△ADC的任意一边上分别作中线(虚线),并在这两条中线上分别取中点,再分别用实线顺次连接这个中点和另外两个顶点,这样△ABC中的实线将其分成的四个图形面积相等。

理由: ①等底等高的三角形的面积相等;②等量加等量和相等。

方法4:先在已知△ABC的任意一边(假设为BC边)上作中线(虚线)AD,再在AD上取三个四等分点E,F,G,分别与B,C两点用实线连接,这样△ABC中的实线将其分成的四个图形的面积相等。

理由:①等底等高的三角形的面积相等;②等高的三角形,底的比等于它们面积的比;③等量加等量和相等。

方法5:先在已知△ABC的任意一边(假设为BC边)上作中线(虚线)AD,再在AD上取中点O,分别用实线连接AB,AC,BD,CD的中点E,F,M,N,这样△ABC内的实线把△ABC分成面积相等的四个图形,理由同上。

三、定比分点法

方法1:在已知△ABC的任意一边(假设为BC边)上取两点D,E,使得BD:DE:EC=1:2:1,用实线连接AD,AE,再在△ADE的任意一边上作中线(实线),这样就将△ABC分成了四个面积相等的小三角形。

理由:①等高的三角形,底的比等于它们面积的比;②等底等高的三角形的面积相等。

方法2:在已知△ABC的任意一边(假设为BC边)上取一点D,使得BD:DC=1:3,用实线连接AD,再将△ADC三等分,这样就将△ABC分成了四个面积相等的图形。

理由:①等高的三角形,底的比等于它们面积的比;②等底等高的三角形的面积相等。

方法3:在已知△ABC的任意一边(假设为BC边)上取一点D,使得BD:DC=1:3,用实线连接AD,再在AD上取三等分点E,实线连接CE,并在较大的三角形(△EDC或△AEC)的任一边上作中线(虚线),用实线将这条中线的中点与另外两个顶点连接,这样△ABC中的实线就将△ABC分成了四个面积相等的图形。

理由:①等高的三角形,底的比等于它们面积的比;②等底等高的三角形的面积相等;③等量加等量和相等。

方法4:在已知△ABC的任意一边(假设BC边)上取一点D,使得BD:DC=1:3,用虚线连接AD,再在AD上取中点E,AC上取三等分点F,G,用实线连接BE,EF,DF,DG,这样△ABC内的实线将△ABC分为面积相等的四个部分。

理由:①等高的三角形,底的比等于它们面积的比;②等底等高的三角形的面积相等;③等量加等量和相等。

方法5:在已知△ABC的任意一边(假设BC边)上取一点D,使得BD:DC=1:3,用虚线连接AD,再在AC边上取两个三等分点E,F,用虚线连接DE,实线连接DF,并在AD、DE上分别取中点G,H,用实线连接BG,GF,FH,HC,这样△ABC内的实线就将△ABC分成面积相等的四个图形。

方法6:在已知△ABC的任意一边(假设BC边)上取一点D,使得BD:DC=1:3,用实线连接AD,再在△ADC的任意一边上作中线(虚线)CE或AE或DE,并在此中线上取两个三等分点F,G,然后用实线连接,就把△ABC分成面积相等的四个图形。

理由:①等高的三角形,底的比等于它们面积的比;②等底等高的三角形的面积相等。

四、中位线法方法:

在△ABC的三边AB,BC,AC上分别取中点D,E,F,实线连接DE,EF,DF,这三条中位线将△ABC分成面积相等的四个小三角形。

五、重心连接法方法:

按定比分点法将△ABC分为面积比为1:3(或3:1)的两个三角形,再将其中较大的三角形按重心连接法(见理由②)等分为三个面积相等的三角形,这样就将△ABC分成四个面积相等的三角形。

理由:①等高的三角形,底的比等于它们面积的比;②任意三角形的重心到各个顶点的连线将该三角形分为三个面积相等的小三角形,这种将三角形三等分的方法称为重心连接法。

以上是以BC边为基础对四等分三角形面积的解题方法作了初步探究。方法实在太多,很难穷尽。如果以AB边或AC边考虑,可用同样的方法得到类似的结果。

参考资料百度百科-三角形面积

检言RP
推荐于2017-11-21 · TA获得超过140个赞
知道答主
回答量:140
采纳率:0%
帮助的人:46.1万
展开全部
1.作底边的高,和其余两边的中点,连接垂足与两个中点 2.底边平均分成4份,连接四等份点和顶点 3.作各边的中点,连接成三角形 4.作底边的高,作高的中点,与另外两个顶点连接. 5.底边做1:3的分点,连接,两个三角形面积为1:3.将大三角形等份三份(将新画...
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
弓希戎qS
2019-12-21 · TA获得超过1616个赞
知道小有建树答主
回答量:1223
采纳率:57%
帮助的人:31.4万
展开全部
把一个三角形分成四个相等的三角形有一种分法:平衡分。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
hsguo2012

2015-11-08 · TA获得超过31.6万个赞
知道大有可为答主
回答量:5.6万
采纳率:62%
帮助的人:4195万
展开全部
最简单的就是三条中位线
追答
然后,还可以从一个顶点连接对边中点,再从这个中点连接另外两条边的中点
这个就有三种
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
风与树的歌T2
2021-05-21
知道答主
回答量:2
采纳率:0%
帮助的人:951
展开全部
把下底平分成四份,取其中三个点和顶点相连。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式