复变函数,为什么ln1=n2πi
因为根据复数的对数计算规则,有Lnz=lnz+2kπi=ln丨z丨+iargz+i2kπ,其中,-π≤argz≤π,k=±1,±2,……。
∴Ln(2)=ln2+i2kπ。Ln(-1)=ln1+iπ+i2kπ=(2k+1)πi。
∵1+i=(√2)(1/√2+i/√2)=(√2)e^(πi/4)。
∴ln(1+i)=(1/2)ln2+πi/4。
ln1=n2πi。
实数1坐标是(1,0)幅角θ为2n*pi;所以1=e的(θ*i)次方。同理虚数i坐标(0,1)幅角θ为(2n+1/2)*pi所以i=e的(θ*i)次方。
扩展资料:
设ƒ(z)是平面开集D内的复变函数。对于z∈D,如果极限存在且有限,则称ƒ(z)在z处是可导的,此极限值称为ƒ(z)在z处的导数,记为ƒ'(z)。这是实变函数导数概念的推广,但复变函数导数的存在却蕴含着丰富的内容。
这是因为z+h是z的二维邻域内的任意一点,极限的存在条件比起一维的实数情形要强得多。一个复变函数如在z的某一邻域内处处有导数,则该函数必在z处有高阶导数。
而且可以展成一个收敛的幂级数(见解析函数)。所以复变函数导数的存在,对函数本身的结构有重大影响,而这些结果的研究,构成了一门学科──复变函数论。
参考资料来源:百度百科-复变函数