电路分析时 相量计算 怎么手算啊,就像2∠45+1∠

 我来答
分享社会民生
高粉答主

2019-08-25 · 热爱社会生活,了解人生百态
分享社会民生
采纳数:1248 获赞数:283354

向TA提问 私信TA
展开全部

幅角都是特殊角度进行纯手工计算:

如:2∠45°+2∠60°=2×(√2/2+j√2/2)+2×(1/2+j√3/2)=√2+j√2+1+j√3=(1+√2)+j(√2+√3)=......

相量加减分析要用平行四边形法则,特殊角度好算,非特殊角度可以化成复数后再运算。

相量乘除法运算较简单,乘法:模相乘、角度相加,出发模相处,角度相减。

但是如果不是特殊角度,如果非要采用手工计算,恐怕就得使用三角函数表了(也就是中学常用的《学生数学用表》)。否则一般角度的正余弦值是得不出来的,要不然就得使用计算器。

扩展资料:

运算中,需要注意的是,相量复数用头上带点的大写字母表示。分析中的相量一般都是指有效值相量。

相量表示正弦量是指两者有对应关系,并不是指两者相等。因为正弦量是时间函数,而相量只是与正弦量的大小及初相相对应的复数。

分析正弦稳态电路的一种方法。1893年由德国人C.P.施泰因梅茨首先提出。此法是用称为相量的复数来代表正弦量,将描述正弦稳态电路的微分(积分)方程变换成复数代数方程,从而在较大的程度上简化了电路的分析和计算。目前,在进行分析电路的正弦稳态时,人们几乎都采用这种方法。

参考资料来源:百度百科-相量法

随你吧e
2019-06-15 · TA获得超过6194个赞
知道答主
回答量:51
采纳率:0%
帮助的人:1.7万
展开全部

相量有两种表示形式:1、模+幅角;2、复数形式。

加减法时,采用复数形式计算。如果是“模+幅角”的形式,就转化为复数形式。如你的题目中:2∠45°+1∠30°=2×(cos45°+jsin45°)+1×(cos30°+jsin30°)=√2/2+j√2/2+√3/2+j0.5=(√2/2+√3/2)+j(0.5+√2/2)。

乘除法时:使用模+幅角形式计算。Z1=R1∠φ1,Z2=∠φ2,则:Z=Z1×Z2=R1∠φ1×R2∠φ2=R1R2∠(φ1+φ2)。如果是复数形式,就需要将其转化为模+幅角的形式:因为Z1=R1∠φ1=R1cosφ1+jR1sinφ1=x+jy,所以R1=√(x²+y²),φ1=arctan(y/x)。

此外,

复数阻抗的实部称为等效电阻,虚部称为电抗,模称为阻抗模,幅角称为阻抗角,它们分别用符号R、X、|Z|、φ表示。复数导纳的实部称为等效电导,虚部称为电纳,模称为导纳模,幅角称为导纳角,它们分别用符号G、B、|Y|、φ┡表示,于是 Z =R+jX=|Z|e。

扩展资料:

例1:电路分析时相量计算,2∠45+1∠-30 计算:

加减用代数式,乘除用指数式,本题是加减,要转换成代数式:

2∠45 + 1∠-30

= 2 cos45° + j 2 sin45° + cos(- 30°) + j sin(- 30°)

= √2 + j √2 + √3/2 - j 0.5

= (√2 + √3/2) + j (√2 - 0.5)

= 2.28 + j0.9142

= 2.456∠21.84°

例2:电路分析时相量计算,2∠45:

相量有两种表示形式:1、模+幅角;2、复数形式。加减法时,采用复数形式计算。如果是“模+幅角”的形式,就转化为复数形式。如你的题目中:2∠45°+1∠30°=2×(cos45°+jsin45°)+1×(cos30°+jsin30°)=√2/2+j√2/2+√3/2+j0.5=(√2/2+√3/2)+j(0.5+√2)。

参考资料:百度百科 --- 相量

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
风中嘹亮的歌Dw
2020-04-16 · TA获得超过2.9万个赞
知道小有建树答主
回答量:1.2万
采纳率:29%
帮助的人:870万
展开全部
相量加减分析要用平行四边形法则,特殊角度好算,非特殊角度可以化成复数后再运算。
相量乘除法运算较简单,乘法:模相乘、角度相加,出发模相处,角度相减。
如果幅角都是特殊角度的话,还能进行纯手工计算;
如:2∠45°+2∠60°=2×(√2/2+j√2/2)+2×(1/2+j√3/2)=√2+j√2+1+j√3=(1+√2)+j(√2+√3)=......
但是如果不是特殊角度,如果非要采用手工计算,恐怕就得使用三角函数表了(也就是中学常用的《学生数学用表》)。否则一般角度的正余弦值是得不出来的,要不然就得使用计算器。
扩展资料:
相量仅适用于频率相同的正弦电路.由于频率一定,在描述电路物理量时就可以只需考虑振幅与相位,振幅与相位用一个复数表示,其中复数的模表示有效值,辐角表示初相位.这个复数在电子电工学中称为相量。
两同频率正弦量叠加,表述为:Asin(ωt+α)+Bsin(ωt+β)=(Acosα+Bcosβ)sinωt+(Asinα+Bsinβ)cosωt.易知,叠加后频率没变,相位变化,而且服从相量(复数)运算法则.故相量相加可以描述同频率正弦量的叠加。
相量的的乘除可以表示相位的变化,例如:电感Ι电压超前电流90度,用相量法表示为U=jχI,其中j为单位复数,χ为感抗。
参考资料来源:搜狗百科-相量
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
孔桂枝和亥
2020-01-10 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:29%
帮助的人:861万
展开全部
如果幅角都是特殊角度的话,还能进行纯手工计算,如:2∠45°+2∠60°=2×(√2/2+j√2/2)+2×(1/2+j√3/2)=√2+j√2+1+j√3=(1+√2)+j(√2+√3)=......
但是如果不是特殊角度,如果非要采用手工计算,恐怕就得使用三角函数表了(也就是中学常用的《学生数学用表》)。否则一般角度的正余弦值是得不出来的,要不然就得使用计算器。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
合夏侯戎05X
2019-12-21 · TA获得超过1827个赞
知道答主
回答量:5139
采纳率:7%
帮助的人:300万
展开全部
这个需要懂电的人才行,不然会出大问题的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式