第二小题 高数
展开全部
第二问和第一问一样的办法呀!
证明:
∵f(x)在(a,b)内连续,
∴f(x)在(a,b)内存在最大值M和最小值m
显然:
m≤f(x)≤M
又∵f(x)>0
因此:m>0
∴lnm≤lnf(x)≤lnM
∀λ∈{λ1,λ2,λ3......λn},则:
λlnm≤λlnf(x)≤λlnM
又∵
x1,x2,x3...xn∈(a,b)
∴
λ1lnm≤λ1lnf(x1)≤λ1lnM
λ2lnm≤λ2lnf(x2)≤λ2lnM
λ3lnm≤λ2lnf(x3)≤λ3lnM
....
λnlnm≤λnlnf(xn)≤λnlnM
上述各式相加:
(λ1+...+λn)lnm≤λ1lnf(x1)+...+λnlnf(xn)≤(λ1+...+λn)lnM
因此:
lnm≤λ1lnf(x1)+...+λnlnf(xn)≤lnM
即:
lnm≤ln[f(x1)^λ1]·[f(x2)^λ2]....[f(xn)^λn]≤lnM
于是:
m≤[f(x1)^λ1]·[f(x2)^λ2]....[f(xn)^λn]≤M
由介质定理:
∃ξ∈(a,b),则:
f(ξ) = [f(x1)^λ1]·[f(x2)^λ2]....[f(xn)^λn]
证明:
∵f(x)在(a,b)内连续,
∴f(x)在(a,b)内存在最大值M和最小值m
显然:
m≤f(x)≤M
又∵f(x)>0
因此:m>0
∴lnm≤lnf(x)≤lnM
∀λ∈{λ1,λ2,λ3......λn},则:
λlnm≤λlnf(x)≤λlnM
又∵
x1,x2,x3...xn∈(a,b)
∴
λ1lnm≤λ1lnf(x1)≤λ1lnM
λ2lnm≤λ2lnf(x2)≤λ2lnM
λ3lnm≤λ2lnf(x3)≤λ3lnM
....
λnlnm≤λnlnf(xn)≤λnlnM
上述各式相加:
(λ1+...+λn)lnm≤λ1lnf(x1)+...+λnlnf(xn)≤(λ1+...+λn)lnM
因此:
lnm≤λ1lnf(x1)+...+λnlnf(xn)≤lnM
即:
lnm≤ln[f(x1)^λ1]·[f(x2)^λ2]....[f(xn)^λn]≤lnM
于是:
m≤[f(x1)^λ1]·[f(x2)^λ2]....[f(xn)^λn]≤M
由介质定理:
∃ξ∈(a,b),则:
f(ξ) = [f(x1)^λ1]·[f(x2)^λ2]....[f(xn)^λn]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询