求详细解答过程~~~
2个回答
展开全部
∫[0:π/2]e^xsin(2x)dx
=(1/5)∫[0:π/2][e^xsin(2x)+2cos(2x)e^x -2cos(2x)e^x+4sin(2x)e^x]dx
=(1/5)[sin(2x) -2cos(2x)]e^x|[0:π/2]
=(1/5)(sinπ-2cosπ)e^(π/2) -(1/5)(sin0-2cos0)e⁰
=(1/5)(0+2)e^(π/2)-(1/5)(0-2)·1
=(2/5)[e^(π/2)+1]
选B
=(1/5)∫[0:π/2][e^xsin(2x)+2cos(2x)e^x -2cos(2x)e^x+4sin(2x)e^x]dx
=(1/5)[sin(2x) -2cos(2x)]e^x|[0:π/2]
=(1/5)(sinπ-2cosπ)e^(π/2) -(1/5)(sin0-2cos0)e⁰
=(1/5)(0+2)e^(π/2)-(1/5)(0-2)·1
=(2/5)[e^(π/2)+1]
选B
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询