代数是什么意思

 我来答
帐号已注销
2019-04-17 · TA获得超过82.9万个赞
知道大有可为答主
回答量:2602
采纳率:100%
帮助的人:170万
展开全部

代数是研究数、数量、关系、结构与代数方程(组)的通用解法及其性质的数学分支。

初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。

代数的研究对象不仅是数字,而是各种抽象化的结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。常见的代数结构类型有群、环、域、模、线性空间等。

扩展资料:

代数的起源:

“代数”作为一个数学专有名词、代表一门数学分支在我国正式使用,最早是在1859年。那年,清代数学家李善兰和英国人韦列亚力共同翻译了英国人棣么甘所写的一本书,译本的名称就叫做《代数学》。当然,代数的内容和方法,我国古代早就产生了,比如《九章算术》中就有方程问题。

代数的起源可以追溯到古巴比伦的时代,当时的人们发展出了较之前更进步的算术系统,使其能以代数的方法来做计算。经由此系统地被使用,他们能够列出含有未知数的方程并求解,这些问题在今日一般是使用线性方程、二次方程和不定线性方程等方法来解答的。

相对地,这一时期大多数的埃及人及西元前1世纪大多数的印度、希腊和中国等数学家则一般是以几何方法来解答此类问题的,如在兰德数学纸草书、绳法经、几何原本及九章算术等书中所描述的一般。希腊在几何上的工作,以几何原本为其经典,提供了一个将解特定问题解答的公式广义化成描述及解答代数方程之更一般的系统之架构。

参考资料来源:百度百科-代数

小小芝麻大大梦
高粉答主

2019-02-28 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:949万
展开全部

代数是研究数、数量、关系、结构与代数方程(组)的通用解法及其性质的数学分支。初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。

代数的研究对象不仅是数字,而是各种抽象化的结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。常见的代数结构类型有群、环、域、模、线性空间等。

扩展资料:

代数的分类:

1、初等代数

在古代,当算术里积累了大量的,关于各种数量问题的解法后,为了寻求有系统的、更普遍的方法,以解决各种数量关系的问题,就产生了以解代数方程的原理为中心问题的初等代数。

初等代数是研究数字和文字的代数运算理论和方法,更确切的说,是研究实数和复数,以及以它们为系数的代数式的代数运算理论和方法的数学分支学科。

2、高等代数

高等代数是代数学发展到高级阶段的总称,它包括许多分支。大学里开设的高等代数,一般包括两部分:线性代数、多项式代数。

高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。

参考资料来源:百度百科-代数

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
教育小百科达人
2019-02-19 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:465万
展开全部

代数释义:数学的分支学科。通过用字母代表数进行运算。能简明地表示数量关系的普遍性,可以解决用算术难以解决的问题。

代数是数学的一个分支。传统的代数用有字符 (变量) 的表达式进行算术运算,字符代表未知数或未定数。如果不包括除法 (用整数除除外),则每一个表达式都是一个含有理系数的多项式。

例如: 1/2 xy +1/4z-3x+2/3. 一个代数方程式是通过使多项式等于零来表示对变量所加的条件。如果只有一个变量,那么满足这一方程式的将是一定数量的实数或复数——它的根。一个代数数是某一方程式的根。

扩展资料:

根据方程的定义,只要是含有未知数的等式,就是方程。这里之所以要强调”代数方程“,是因为除了代数方程之外,还有超越方程(即非代数的初等方程,包括指数方程、对数方程、三角方程、反三角方程等)、微分方程、差分方程、积分方程等许多其他形式的方程。后面几类显然不属于代数的范畴。

无论是在代数还是在分析中,代数结构都是最常见到的结构之一。十九世纪前半叶末,随着哈密顿四元数理论的建立,非交换代数的研究已经开始,在十九世纪下半叶,随着M.S.李的工作,非结合代数出现了. 到二十世纪初,由于放弃实数体或复数体作为算子域的限制,代数得到了重大扩展.

与外代数,对称代数,张量代数,克利福德代数等一起,代数结构在多重线性代数中也建立了起来。

参考资料来源:百度百科——代数

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
白gongzi
2018-03-03 · TA获得超过1.2万个赞
知道大有可为答主
回答量:1.8万
采纳率:95%
帮助的人:1217万
展开全部

代数的意思为研究数、数量、关系、结构与代数方程(组)的通用解法及其性质的数学分支。

代数

读音:dài shù。

释义:是研究数、数量、关系、结构与代数方程(组)的通用解法及其性质的数学分支。

词类:名词。

例句:该模型计算简单,通过代数运算可以得到具有较高精度的磁力计算结果。

代数是研究数、数量、关系、结构与代数方程(组)的通用解法及其性质的数学分支,其中将算术关系加以概括并用代表数字的字母符号、变量或其它数学实体来探讨(如矢量和矩阵),字母符号是结合起来的,尤指在按照指定的规律形成方程的情况下。

初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。代数的研究对象不仅是数字,而是各种抽象化的结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。常见的代数结构类型有群、环、域、模、线性空间等。

中文名:代数。

外文名:algebra。

所属学科:数学。

学科特点:抽象。

重要理论:伽罗瓦理论。

常见类型:对称代数、张量代数。

介绍:

在古代,当算术里积累了大量的,关于各种数量问题的解法后,为了寻求有系统的、更普遍的方法,以解决各种数量关系的问题,就产生了以解代数方程的原理为中心问题的初等代数。

代数(algebra)是由算术(arithmetic)演变来的,这是毫无疑问的。至于什么年代产生的代数学这门学科,就很不容易说清楚了。比如,如果你认为“代数学”是指解bx+k=0这类用符号表示的代数方程的技巧。这种“代数学”是在十六世纪才发展起来的。

定义:

代数是数学的一个分支。传统的代数用有字符 (变量) 的表达式进行算术运算,字符代表未知数或未定数。如果不包括除法 (用整数除除外),则每一个表达式都是一个含有理系数的多项式。例如: 1/2 xy +1/4z-3x+2/3. 一个代数方程式 (参见EQUATION)是通过使多项式等于零来表示对变量所加的条件。如果只有一个变量,那么满足这一方程式的将是一定数量的实数或复数——它的根。一个代数数是某一方程式的根。代数数的理论——伽罗瓦理论是数学中最令人满意的分支之一。建立这个理论的伽罗瓦(Evariste Galois,1811-32)在21岁时死于决斗中。他证明了不可能有解五次方程的代数公式。用他的方法也证明了用直尺和圆规不能解决某些著名的几何问题(立方加倍,三等分一个角)。多于一个变量的代数方程理论属于代数几何学,抽象代数学处理广义的数学结构,它们与算术运算有类似之处。参见,如: 布尔代数(BOOLEAN ALGEBRA);群 (GRO-UPS);矩阵(MATRICES);四元数(QUA-TERNIONS );向量(VECTORS)。这些结构以公理 (见公理法 AXIOMATICMETHOD) 为特征。特别重要的是结合律和交换律。代数方法使问题的求解简化为符号表达式的操作,已渗入数学的各分支。

设K为一交换体. 把K上的向量空间E叫做K上的代数,或叫K-代数,如果赋以从E×E到E中的双线性映射。换言之,赋以集合E由如下三个给定的法则所定义的代数结构:

——记为加法的合成法则(x,y)↦x+y;

——记为乘法的第二个合成法则(x,y)↦xy;

——记为乘法的从K×E到E中的映射(α,x)↦αx,这是一个作用法则;

这三个法则满足下列条件:

a) 赋以第一个和第三个法则,E则为K上的一个向量空间;

b) 对E的元素的任意三元组(x,y,z),有

x(y+z)=xy+xz(y+z)x=yx+zx;

c)对K的任一元素偶(α,β)及对E的任一元素偶(x,y),有(αx)(βy)=(αβ) (xy)。

设A为一非空集合. 赋予从A到K中的全体映射之集ℱ(A,K)以如下三个法则:

则ℱ(A, K)是K上的代数, 自然地被称为从A到K中的映射代数.当A=N时, 代数ℱ(A,K)叫做K的元素序列代数。

无论是在代数还是在分析中,代数结构都是最常见到的结构之一。十九世纪前半叶末,随着哈密顿四元数理论的建立,非交换代数的研究已经开始。 在十九世纪下半叶,随着M.S.李的工作,非结合代数出现了。到二十世纪初,由于放弃实数体或复数体作为算子域的限制,代数得到了重大扩展。

与外代数,对称代数,张量代数,克利福德代数等一起,代数结构在多重线性代数中也建立了起来。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
518姚峰峰

2018-03-08 · 知道合伙人人力资源行家
518姚峰峰
知道合伙人人力资源行家
采纳数:50865 获赞数:564213
大学班长,中共党员。一次性通过英语四六级及计算机二级,现任公司综合办主任。为百度金榜题名时团队团长。

向TA提问 私信TA
展开全部

代数

一、拼音: dài shù

二、代数意思:

1、数学的一个分支,其中将算术关系加以概括并用代表数字的字母符号、变量或其它数学实体来探讨(如矢量和矩阵),字母符号是结合起来的,尤指在按照指定的规律形成方程的情况,一种利用符号来代替未知数,进而加以运算而解决问题的方法。

2、代数学的简称。

三、例句:

  • 本文研究了含幺可换环上一般线性李代数的子代数结构。

  • 完全分配交换子空间格代数是一类重要的非自伴、自反算子代数。

  • 算术和初等代数中普通的数通称纯量。

  • 代数整数环的每个子环都不是归纳环。

  • 数学班从幼稚园至高中几何班,代数班,和微积分先修班。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(6)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式