这道题怎么做,求解
展开全部
3n/(n^3+3n)^(1/3)≤lim(n->∞) ∑(i:1->3n) [ 1/(n^3+i)^(1/3) ] ≤ 3n/(n^3+1)^(1/3)
lim(n->∞) 3n/(n^3+3n)^(1/3)
=lim(n->∞) 3/(1+3/n^2)^(1/3)
=3
lim(n->∞) 3n/(n^3+1)^(1/3)
=lim(n->∞) 3/(1+1/n^3)^(1/3)
=3
=>
lim(n->∞) ∑(i:1->3n) [ 1/(n^3+i)^(1/3) ] =3
lim(n->∞) 3n/(n^3+3n)^(1/3)
=lim(n->∞) 3/(1+3/n^2)^(1/3)
=3
lim(n->∞) 3n/(n^3+1)^(1/3)
=lim(n->∞) 3/(1+1/n^3)^(1/3)
=3
=>
lim(n->∞) ∑(i:1->3n) [ 1/(n^3+i)^(1/3) ] =3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询