一道高一数学问题,求解答,在线等,急,高悬赏~ 50
展开全部
解:(I)证明:延长AD,BE,CF相交于点K,如图所示,∵平面BCFE⊥平面ABC,∠ACB=90°,
∴AC⊥平面BCK,∴BF⊥AC. 又EF∥BC,BE=EF=FC=1,BC=2,∴△BCK为等边三角形,且F为CK的中点,则BF⊥CK, ∴BF⊥平面ACFD.
(II)方法一:过点F作FQ⊥AK,连接BQ,∵BF⊥平面ACFD.∴BF⊥AK,则AK⊥平面BQF,
∴BQ⊥AK.∴∠BQF是二面角B﹣AD﹣F的平面角.
在Rt△ACK中,AC=3,CK=2,可得FQ=3√13/13.
在Rt△BQF中,BF=√3,FQ= 3√13/13,
.可得:cos∠BQF=√3/4,
∴二面角B﹣AD﹣F的平面角的余弦值为√3/4。
.
∴AC⊥平面BCK,∴BF⊥AC. 又EF∥BC,BE=EF=FC=1,BC=2,∴△BCK为等边三角形,且F为CK的中点,则BF⊥CK, ∴BF⊥平面ACFD.
(II)方法一:过点F作FQ⊥AK,连接BQ,∵BF⊥平面ACFD.∴BF⊥AK,则AK⊥平面BQF,
∴BQ⊥AK.∴∠BQF是二面角B﹣AD﹣F的平面角.
在Rt△ACK中,AC=3,CK=2,可得FQ=3√13/13.
在Rt△BQF中,BF=√3,FQ= 3√13/13,
.可得:cos∠BQF=√3/4,
∴二面角B﹣AD﹣F的平面角的余弦值为√3/4。
.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询