高次幂(如3次)因式分解技巧
1、提公因法
如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例:分解因式x -2x
-x
x -2x -x=x(x -2x-1)
2、应用公式法
由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例:分解因式a
+4ab+4b
a +4ab+4b =(a+2b)
3、 分组分解法
要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)
例:分解因式m
+5n-mn-5m
m +5n-mn-5m= m -5m -mn+5n
= (m -5m )+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n)
4、 十字相乘法
对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)
例:分解因式7x
-19x-6
分析: 1 -3
7 2
2-21=-19
7x -19x-6=(7x+2)(x-3)
5、配方法
对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x
+3x-40
解x +3x-40=x +3x+( ) -( ) -40
=(x+ ) -( )
=(x+ + )(x+ - )
=(x+8)(x-5)
参考资料来源:
熟练运用立方和 ,立方差公式。
整式方程未知数次数最高项次数高于2次的方程,称为高次方程。高次方程解法思想是通过适当的方法,把高次方程化为次数较低的方程求解。
对于5次及以上的一元高次方程没有通用的代数解法和求根公式(即通过各项系数经过有限次四则运算和乘方和开方运算无法求解),这称为阿贝尔定理。 换句话说,只有三次和四次的高次方程可用根式求解。
扩展资料:
一般定义
整式方程未知数次数最高项次数高于2次的方程,称为高次方程。
一般形式
高次方程的一般形式为:
anx^n+an-1x^n-1+-------+a1x+a0=0
等式两边同时除以最高项系数,得:
anx^n/an+an-1x^n-1/an+--------+a1x/an+a0/an=0
所以高次方程一般形式又可写为:
x^n+bnx^n-1+-------b1x+b0=0
参考资料来源:百度百科 ——幂运算
其实高次因式分解主要的中心思想就是想办法降幂
合理的分组,提起公因式,可以达到降幂的效果
以及 a^3+b^3+c^3-3abc=(a+b+c)(a方+b方+c方-ab-ac-bc)