求导第7题求解 10
1个回答
展开全部
证明:当x>0时,成立不等式x/(1+x²)证明:设y=x/(1+x²)-arctanx,由于y'=[(1+x²)-2x²]/(1+x²)²-1/(1+x²)=(1-x²)/(1+x²)²-1/(1+x²)
=[(1-x²)-(1+x²)]/(1+x²)²=-2x²/(1+x²)<0,故y是减函数;当x=0时,y=0;当x>0时必有y<0;
即不等式x/(1+x²)0时成立;
再设u=arctanx-x,由于u'=1/(1+x²)-1=-x²/(1+x²)<0,故u也是减函数;当x=0时u=0;故当x>0时
必有u=arctanx-x<0,即不等式arctanx0时成立.
于是命题得证.
=[(1-x²)-(1+x²)]/(1+x²)²=-2x²/(1+x²)<0,故y是减函数;当x=0时,y=0;当x>0时必有y<0;
即不等式x/(1+x²)0时成立;
再设u=arctanx-x,由于u'=1/(1+x²)-1=-x²/(1+x²)<0,故u也是减函数;当x=0时u=0;故当x>0时
必有u=arctanx-x<0,即不等式arctanx0时成立.
于是命题得证.
追问
这什么呀?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询