求(1-√x)/(1+³√x)的不定积分是多少
2个回答
展开全部
令x^(1/6)=t
x=t^6
dx=6t^5dt
代入得
∫(1-√x)/(³√x+1)dx
=∫(1-t^3)/(t^2+1)*6t^5dt
=6∫(t^5-t^8)/(t^2+1)dt
=-6∫(t^8-t^5)/(t^2+1)dt
=-6∫(t^8+t^6-t^6-t^4+t^4+t^2-t^2-1+1-t^5-t^3+t^3+t-t)/(t^2+1)dt
=-6∫[t^6-t^4-t^3+t^2+t-1-t/(t^2+1)-1/(t^2+1)]dt
=-6[t^7/7-t^5/5-t^4/4+t^3/3+t^2/2-t-1/2ln(t^2+1)-arctant]
=-6t^7/7+6t^5/5+3t^4/2-2t^3-3t^2+6t+3ln(t^2+1)+6arctant+C
将t反带回去!!
x=t^6
dx=6t^5dt
代入得
∫(1-√x)/(³√x+1)dx
=∫(1-t^3)/(t^2+1)*6t^5dt
=6∫(t^5-t^8)/(t^2+1)dt
=-6∫(t^8-t^5)/(t^2+1)dt
=-6∫(t^8+t^6-t^6-t^4+t^4+t^2-t^2-1+1-t^5-t^3+t^3+t-t)/(t^2+1)dt
=-6∫[t^6-t^4-t^3+t^2+t-1-t/(t^2+1)-1/(t^2+1)]dt
=-6[t^7/7-t^5/5-t^4/4+t^3/3+t^2/2-t-1/2ln(t^2+1)-arctant]
=-6t^7/7+6t^5/5+3t^4/2-2t^3-3t^2+6t+3ln(t^2+1)+6arctant+C
将t反带回去!!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询