极坐标定积分求面积

 我来答
弈轩
2019-04-17 · 知道合伙人教育行家
弈轩
知道合伙人教育行家
采纳数:1029 获赞数:7544
电子设计大赛三等奖 优秀毕业生

向TA提问 私信TA
展开全部

如图,这是圆和双纽线的交集,实际上是两片叶瓣组成,如下图所示


如图,如有疑问或不明白请追问哦!

如下图解释 [0,π/6]∫sin²θdθ ,这是图中圆形割出来的“弓形”,从极点出发的0°到30°的积分

先把dθ当做5°,则从极点射出间隔为5°的射线,将圆弧分割为多段,将多段割线和30°的线段用黑色虚线相连,则黑色虚线围成的图形近似于[0,π/6]∫sin²θdθ。注意黑色虚线围成的是一个7边型。

完整大图如下:红色的是双纽线

而微积分的思想就是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这段话引用自我国古代数学家刘徽。

当dθ无限地小下去,分割的段数无穷大时,割出来的无穷多边型就和该“弓形”面积无异了。

而实际上我们不可能每做一次积分题都真的去割16段、128段、乃至65536段。而是找出规律,将积分中难以计算的部分转化为已经有数学先贤算好的计算模式!

而圆周率π,就是一种成熟的,已经有先贤替我们算到很高精确度结果的数学概念。

如此良心回答,不知楼主明白了吗?明白请点击“采纳”,谢谢。

fin3574
高粉答主

2017-12-06 · 你好啊,我是fin3574,請多多指教
fin3574
采纳数:21378 获赞数:134628

向TA提问 私信TA
展开全部

你的答案没有错,再检查一下吧。

这里提供二重积分的方法,如图所示:

追问
懂了,不过二重积分还没学,谢了,姐姐
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式