求此题详解
2个回答
2018-01-13 · 知道合伙人教育行家
关注
展开全部
因为y=x^2 sin3x,
所以y′=2x*sin3x+x^2*3cos3x
=2x*sin3x+3x^2*cos3x
y′′=(2*sin3x+2x*3cos3x)+(6x*cos3x-9x^2*sin3x)
=(2-9x^2)*sin3x+12x*cos3x
y′′|(x=0)
=(2-0)×0+12×0×1
=0
所以y′=2x*sin3x+x^2*3cos3x
=2x*sin3x+3x^2*cos3x
y′′=(2*sin3x+2x*3cos3x)+(6x*cos3x-9x^2*sin3x)
=(2-9x^2)*sin3x+12x*cos3x
y′′|(x=0)
=(2-0)×0+12×0×1
=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询