2个回答
展开全部
∫(0->√3/2) arcsinx/(1-x^2)^(3/2) dx
let
x=sinu
dx=cosu du
x=0, u=0
x=√3/2 , u=π/3
∫(0->√3/2) arcsinx/(1-x^2)^(3/2) dx
=∫(0->π/3) [u/(cosu)^3] (cosu du)
=∫(0->π/3) u(secu)^2 du
=∫(0->π/3) udtanu
=[utanu]|(0->π/3) -∫(0->π/3) tanu du
=(√3/3)π +[ln|cosu|]|(0->π/3)
=(√3/3)π +ln(1/2)
=(√3/3)π -ln2
let
x=sinu
dx=cosu du
x=0, u=0
x=√3/2 , u=π/3
∫(0->√3/2) arcsinx/(1-x^2)^(3/2) dx
=∫(0->π/3) [u/(cosu)^3] (cosu du)
=∫(0->π/3) u(secu)^2 du
=∫(0->π/3) udtanu
=[utanu]|(0->π/3) -∫(0->π/3) tanu du
=(√3/3)π +[ln|cosu|]|(0->π/3)
=(√3/3)π +ln(1/2)
=(√3/3)π -ln2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询