四阶行列式
2个回答
展开全部
四阶行列式的计算方法:
第1步:把2、3、4列加到第1 列,提出第1列公因子 10,化为
1 2 3 4
1 3 4 1
1 4 1 2
1 1 2 3
第2步:第1行乘 -1 加到其余各行,得
1 2 3 4
0 1 1 -3
0 2 -2 -2
0 -1 -1 -1
第3步:r3 - 2r1,r4+r1,得
1 2 3 4
0 1 1 -3
0 0 -4 4
0 0 0 -4
所以行列式 = 10* (-4)*(-4) = 160。
扩展资料
四阶行列式的性质
1、在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。
2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
3、四阶行列式由排成n阶方阵形式的n²个数aij(i,j=1,2,...,n)确定的一个数,其值为n。
4、四阶行列式中k1,k2,...,kn是将序列1,2,...,n的元素次序交换k次所得到的一个序列,Σ号表示对k1,k2,...,kn取遍1,2,...,n的一切排列求和,那么数D称为n阶方阵相应的行列式。
参考资料来源:百度百科—行列式
2018-09-17
展开全部
方法一:第1行乘1加到第2行, 得 2 1 4 1 5 0 6 2 1 2 3 2 5 0 6 2 第2行与第4行相同, 故行列式等于0。方法二:将行列式按第四行展开, 得行列式D = (-1)^5*5*10 + (-1)^7*6*(-6) + (-1)^8*2*7 = -50 + 36 + 14 = 0 扩展资料:行列式性质: 1、行列式A中某行(或列)用同一数k乘,其结果等于kA。 2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。 3、若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。 4、行列式A中两行(或列)互换,其结果等于-A。 5、把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。参考资料:行列式——百度百科
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询