切线的斜率怎么求?
k=(y1-y2)/(x1-x2)。
斜率表示一条直线(或曲线的切线)关于(横)坐标轴倾斜程度的量。它通常用直线(或曲线的切线)与(横)坐标轴夹角的正切,或两点的纵坐标之差与横坐标之差的比来表示。
直线对X 轴的倾斜角α的正切值tgα称为该直线的“斜率”,并记作k,k=tgα。规定平行于X轴的直线的斜率为零,平行于Y轴的直线的斜率不存在。对于过两个已知点(x1,y1) 和 (x2,y2)的直线,若x1≠x2,则该直线的斜率为k=(y1-y2)/(x1-x2)。
扩展资料:
曲线斜率:
曲线的上某点的斜率则反映了此曲线的变量在此点处的变化的快慢程度。曲线的变化趋势仍可以用过曲线上一点的切线的斜率即导数来描述。导数的几何意义是该函数曲线在这一点上的切线斜率。
f'(x)>0时,函数在该区间内单调递增,曲线呈向上的趋势;f'(x)<0时,函数在该区间内单调减,曲线呈向下的趋势。
在(a,b)f''(x)<0时,函数在该区间内的图形是凸(从上向下看)的;f''(x)>0时,函数在该区间内的图形是凹的。
参考资料来源:百度百科-斜率
设切线方程y=kx+b,和y=x²联立,消去x或y,得一个一元二次方程(要保证二次项系数不等于零,否则就不是了),再令Δ=0,解得k=6,代入点(3,9),得切线方程y=6x-9。
---
其实求导就可以了:
y'=(x²)'=2x,代入x=3,得k=6。代入点(3,9),得切线方程y=6x-9。
但这种方法需要微积分初步知识。没学过的话,老老实实解方程组吧。
几何上,切线指的是一条刚好触碰到曲线上某一点的直线。更准确地说,当切线经过曲线上的某点(即切点)时,切线的方向与曲线上该点的方向是相同的,此时,"切线在切点附近的部分"最接近"曲线在切点附近的部分"(无限逼近思想)。tangent在拉丁语中就是"to touch"的意思。类似的概念也可以推广到平面相切等概念中。
斜率用来量度斜坡的斜度。在数学上,直线的斜率处处相等,它是直线的倾斜程度的量度。透过代数和几何,可以计算出直线的斜率;曲线的上某点的斜率则反映了此曲线的变量在此点处的变化的快慢程度。运用微积分可计算出曲线中的任一点的斜率。直线的斜率的概念等同土木工程和地理中的坡度。倾斜角不是90度的直线才有斜率。
y=1/x
求导得
y'=-1/x²
当x=1/2时,y'=-4
即该点处切线的斜率是k=y'=-4
从而易得法线斜率是1/4
又切线与法线都过点(1/2,2),所以得到
切线方程是:y=-4x+4
法线方程是:y=(1/4)x+(15/8)