划线部分怎么来的,求步骤
展开全部
1+cosx = 2[cos(x/2)]^2
sinx = 2sin(x/2).cos(x/2)
2sinx(1+cosx) = 8sin(x/2).[cos(x/2)]^3
∫ dx/[2sinx(1+cosx)]
=∫ dx/[8sin(x/2).[cos(x/2)]^3]
=∫ d(x/2)/[4sin(x/2).[cos(x/2)]^3]
=(1/4)∫ d(x/2)/[sin(x/2).[cos(x/2)]^3]
sinx = 2sin(x/2).cos(x/2)
2sinx(1+cosx) = 8sin(x/2).[cos(x/2)]^3
∫ dx/[2sinx(1+cosx)]
=∫ dx/[8sin(x/2).[cos(x/2)]^3]
=∫ d(x/2)/[4sin(x/2).[cos(x/2)]^3]
=(1/4)∫ d(x/2)/[sin(x/2).[cos(x/2)]^3]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询