1个回答
展开全部
方法1:转化为单变量求导:
z=xy,x+y=1
代入得z=x-x²有极大值。
导数z'=1-2x,
极值时z'=0,
x=1/2,
此时z=1/4。
方法二:拉格朗日乘数法
设给定二元函数z=ƒ(x,y)【此题即z=xy】和附加条件φ(x,y)=0【此题即x+y-1=0】,为寻找z=ƒ(x,y)在附加条件下的极值点,先做拉格朗日函数L=f(x,y,z)+λφ(x,y,z),其中λ为参数。求L(x,y)对x和y的一阶偏导数,令它们等于零,并与附加条件联立。
L=xy+λ(x+y-1)
Lx'(x,y)=y+λ=0
Ly'(x,y)=x+λ=0
x+y-1=0
解得x=y=1/2,λ=-1/2,
则极值为z=1/2×1/2=1/4 。
z=xy,x+y=1
代入得z=x-x²有极大值。
导数z'=1-2x,
极值时z'=0,
x=1/2,
此时z=1/4。
方法二:拉格朗日乘数法
设给定二元函数z=ƒ(x,y)【此题即z=xy】和附加条件φ(x,y)=0【此题即x+y-1=0】,为寻找z=ƒ(x,y)在附加条件下的极值点,先做拉格朗日函数L=f(x,y,z)+λφ(x,y,z),其中λ为参数。求L(x,y)对x和y的一阶偏导数,令它们等于零,并与附加条件联立。
L=xy+λ(x+y-1)
Lx'(x,y)=y+λ=0
Ly'(x,y)=x+λ=0
x+y-1=0
解得x=y=1/2,λ=-1/2,
则极值为z=1/2×1/2=1/4 。
追问
你有病吧
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询