2个回答
展开全部
(10)
y=2xarctanx - ln(1+x^2)
y' = 2[ x/(1+x^2) +arctanx] - 2x/(1+x^2)
= 2arctanx
(11)
x->0
tanx ~ x +(1/3)x^3
tanx -x ~ (1/3)x^3
sinx ~ x-(1/6)x^3
x-sinx ~ (1/6)x^3
lim(x->0) (tanx -x)/(x- sinx)
=lim(x->0) (1/3)x^3/[ (1/6)x^3]
=2
(5)
y=[1+x^(1/3) ]^(1/3)
dy =(1/3) [1+x^(1/3) ]^(-2/3) . [ (1/3)x^(-2/3) ] dx
= (1/9) x^(-2/3) . [1+x^(1/3) ]^(-2/3) . dx
y=2xarctanx - ln(1+x^2)
y' = 2[ x/(1+x^2) +arctanx] - 2x/(1+x^2)
= 2arctanx
(11)
x->0
tanx ~ x +(1/3)x^3
tanx -x ~ (1/3)x^3
sinx ~ x-(1/6)x^3
x-sinx ~ (1/6)x^3
lim(x->0) (tanx -x)/(x- sinx)
=lim(x->0) (1/3)x^3/[ (1/6)x^3]
=2
(5)
y=[1+x^(1/3) ]^(1/3)
dy =(1/3) [1+x^(1/3) ]^(-2/3) . [ (1/3)x^(-2/3) ] dx
= (1/9) x^(-2/3) . [1+x^(1/3) ]^(-2/3) . dx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询