展开全部
系数矩阵 A 行初等变换化为 B,实际上就是线性方程组同解变形为
x1 +x2 -3x4-x5 = 0
-2x2+2x3+2x4+x5 = 0
3x4-x5 = 0
r(A) = 3, 未知数个数 n = 5
应有 5 - 3 = 2 个自由未知量,即基础解系含有 2 个线性无关的解向量。
每个独立方程均含 x5, 则 x5 可设为自由未知量;
由第 3 个方程知, x4 = (1/3)x5, 故 x4 不能再设为自由未知量,
故再选 x3 为自由未知量。最好不用回代法,改用下法:
将自由未知量移至方程右边得
x1 +x2 -3x4 = x5
-2x2+2x4 = -2x3-x5
3x4 = x5
取 x3 = 1, x5 = 0, 得基础解系 (-1, 1, 1, 0, 0)^T,
取 x3 = 0, x5 = 6, 得基础解系 (7, 5, 0, 2, 6)^T.
则该齐次线性方程组的通解是
x = k (-1, 1, 1, 0, 0)^T+ c (7, 5, 0, 2, 6)^T
其中, k, c 为任意常数。
(此处 k 就是答案中的 k1, c 就是答案中的 k2 的2倍)
x1 +x2 -3x4-x5 = 0
-2x2+2x3+2x4+x5 = 0
3x4-x5 = 0
r(A) = 3, 未知数个数 n = 5
应有 5 - 3 = 2 个自由未知量,即基础解系含有 2 个线性无关的解向量。
每个独立方程均含 x5, 则 x5 可设为自由未知量;
由第 3 个方程知, x4 = (1/3)x5, 故 x4 不能再设为自由未知量,
故再选 x3 为自由未知量。最好不用回代法,改用下法:
将自由未知量移至方程右边得
x1 +x2 -3x4 = x5
-2x2+2x4 = -2x3-x5
3x4 = x5
取 x3 = 1, x5 = 0, 得基础解系 (-1, 1, 1, 0, 0)^T,
取 x3 = 0, x5 = 6, 得基础解系 (7, 5, 0, 2, 6)^T.
则该齐次线性方程组的通解是
x = k (-1, 1, 1, 0, 0)^T+ c (7, 5, 0, 2, 6)^T
其中, k, c 为任意常数。
(此处 k 就是答案中的 k1, c 就是答案中的 k2 的2倍)
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
n = 2 时, 方程组化为 -x1 + x2 = 0, 基础解系 (1, 1)^T, 通解 x = k(1, 1)^T。
n ≥ 3 时,将 A 的第 2, 3,... , n 行均加到第 1 行, 然后第 1 行除以 n-2, 再将第 1 行 -1 倍加到第 2, 3,... , n 行, 得 r(A) = n , 方程组只有 零解。
n ≥ 3 时,将 A 的第 2, 3,... , n 行均加到第 1 行, 然后第 1 行除以 n-2, 再将第 1 行 -1 倍加到第 2, 3,... , n 行, 得 r(A) = n , 方程组只有 零解。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询