高数题求解关于极限的一个疑惑问题

看这两题和答案解析,我想问什么时候讨论一个点的左右极限呢,第一题答案就没讨论010-1左右的极限,而第二题只讨论了0的左右极限,那么我现在就是疑惑,什么时候该讨论左右极限... 看这两题和答案解析,我想问什么时候讨论一个点的左右极限呢,第一题答案就没讨论0 1 0 -1左右的极限,而第二题只讨论了0的左右极限,那么我现在就是疑惑,什么时候该讨论左右极限呢 展开
 我来答
csdygfx
2019-07-30 · TA获得超过21.4万个赞
知道顶级答主
回答量:9.1万
采纳率:86%
帮助的人:7.9亿
展开全部


变号或左右值不等

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
tllau38
高粉答主

2019-07-30 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:2亿
展开全部
1.1.33
f(x) = (x-x^3)/sin(πx)
lim(x->0) (x-x^3)/sin(πx)
=lim(x->0) (x-x^3)/(πx)
=lim(x->0) (1-x^2)/π
=1/π
可去间断点: x=0
lim(x->1) (x-x^3)/sin(πx) (0/0 分子分母分别求导)
=lim(x->1) (1-3x^2)/[πcos(πx) ]
=(1-3)/(-π)
=2/π
可去间断点: x=1
lim(x->-1) (x-x^3)/sin(πx) (0/0 分子分母分别求导)
=lim(x->-1) (1-3x^2)/[πcos(πx) ]
=(1-3)/(-π)
=2/π
可去间断点: x=-1
ans : C
1.1.34
原因
√(1+ 1/x^2) >0
0+ : 是比0 多一点。那 x >0
0- : 是比0 少一点。那 -x >0

x->0+
√(1+ 1/x^2) = √[(x^2+ 1)/x^2] = (1/x) √(x^2+ 1)
x->0-
√(1+ 1/x^2) = √[(x^2+ 1)/x^2] = (-1/x) √(x^2+ 1)
lim(x->0+) [ (x^2-x)/(x^2-1) ]√(1+ 1/x^2)

=lim(x->0+) [ 1/(x+1) ]√(x^2+1)
= 1
lim(x->0-) [ (x^2-x)/(x^2-1) ]√(1+ 1/x^2)
=lim(x->0-) [ -1/(x+1) ]√(x^2+1)
=-1
跳跃间断点 : x=0
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式